Skip to main content
Log in

Titanium transport through the blood stream. An experimental study on rats

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Different metals are increasingly being used to manufacture implants, especially in the fields of dentistry and orthopedics. No metal or alloy is completely inert in vivo. The metal and the organic fluids interact releasing, for example, metallic products. Several hypotheses regarding the probable dissemination routes of titanium have been postulated, but its valence, the organic nature of its ligands and its potential toxicity have yet to be established. In a previous experimental study we demonstrated that i.p. injected titanium and zirconium oxides disseminate and deposit in organs such as liver and lung. The aim of this work was to study the eventual participation of blood cells in the transport mechanism of titanium employing the intraperitoneal injection of titanium oxide in rats as the experimental model. Twenty male Wistar rats, x: 100 g body weight, were intraperitoneally injected with 16×103 mg/kg b.w. of TiO2 in saline solution. Blood samples were taken by heart puncture at 3 and 6 months; blood smears were performed and stained with safranin evidencing monocytes containing titanium particles. The results obtained in this study would indicate that one of the ways in which titanium is disseminated is through the blood stream, via blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Albrektsson, in “Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry” (Quintessence, 1985) p. 129.

  2. P.-I. Bränemark, J. Dent. Educ. 52 (1988) 821.

    Google Scholar 

  3. B. D. Ratner, in “Biomaterials Science: An Introduction to Materials in Medicine” (Academic Press, 1996) p. 1.

  4. P.-I. Bränemark, V. Breine, J. Lindström, R. Adell, B. O. Hansson and P. Ohlsson, Scand. J. Plast. Reconstr. Surg. 3 (1969) 81.

    Google Scholar 

  5. T. Albrektsson, P.-I. Bränemark, H.-A. Hansson and J. Lindström, Acta Orthop. Scand. 52 (1981) 155.

    Google Scholar 

  6. J. Asoka, N. Kuwayama, O. Okuno and I. Miura, J. Biomed. Mater. Res. 19 (1985) 699.

    Google Scholar 

  7. T. Rae, Biomaterials 7 (1986) 30.

    Google Scholar 

  8. D. Deporte, P. Watson, R. Pilliar, T. Howley and J. Winslow, J. Dent. Res. 67 (1988) 1190.

    Google Scholar 

  9. C. Johansson, Thesis, University of Göteborg, Sweden, 1991.

  10. P.-I. Bränemark, B. O. Hansson, R. Adell, U. Breine, J. Lindström, O. Hallén and A. Öhman, Scand. J. Plast. Reconstr. Surg. Suppl. 16 (1977) 131.

    Google Scholar 

  11. R. Adell, V. Lekholm, B. Rockler and P.-I. Bränemark, Int. J. Oral Surg. 10 (1981) 387.

    Google Scholar 

  12. T. Albrektsson, J. Prosthet. Dent. 60 (1988) 75.

    Google Scholar 

  13. V. Lekholm, D. Van Steenbergh, I. Herrmann, C. Bolender, T. Folmer, J. Gunne, P. Henry, K. Higuchi, W. R. Laney and U. Lindeén, Int. J. Oral Maxillofac. Implants 9 (1994) 627.

    Google Scholar 

  14. T. O. Hoar and D. C. Mears, Proc. R. Soc. Med. 249 (1966) 486.

    Google Scholar 

  15. R. F. Coleman, J. Herrington and J. T. Scales, Br. Med. J. 1 (1973) 527.

    Google Scholar 

  16. D. C. Mears, Int. Metals Rev. 22 (1977) 119.

    Google Scholar 

  17. A. Wisbey, P. J. Gregson, L. M. Peter and M. Tuke, Biomaterials 12 (1991) 470.

    Google Scholar 

  18. S. G. Steinemann, in “Compatibility of Biomedical Implants. Corrosion and Organic and Biological Electrochemistry Divisions”, edited by P. Kovacs, N. S. Istephanous (Pennington, NJ, 1994) p. 94.

  19. J. M. Anderson, in “Biomaterials Science. An Introduction to Materials in Medicine” (Academic Press, 1996) p. 415.

  20. J. L. Gilbert, C. A. Buckley, J. J. Jacobs and E. P. Lautenschlager, in “Medical Applications of Titanium and Its Alloys; The Material and Biological Issues”, edited by S. A. Brown and J. E. Lemons (American Society for Testing and Materials Specials Technical Publication, West Conshohocken, Pennsylvania, 1996) p. 199.

    Google Scholar 

  21. A. P. Gwyniolo, J. Mater. Sci. Mater. Med. 5 (1994) 357.

    Google Scholar 

  22. M. Wong, J. Eulenberger, R. Schenk and E. Hunziker, J. Biomed. Mater. Res. 29 (1995) 1567.

    Google Scholar 

  23. M. Espósito, J. M. Hirsch, U. Lekholm and P. Thomsen, Eur. J. Oral Sci. 106 (1998) 721.

    Google Scholar 

  24. J. Black, A. Skipor, J. Jacobs, R. M. Urban and J. O. Galante, Trans. Orthop. Res. Soc. 14 (1989) 501.

    Google Scholar 

  25. J. L. Gilbert, C. A. Buckley and J. J. Jacobs, J. Biomed. Mater. Res. 27 (1993) 1533.

    Google Scholar 

  26. D. F. Williams, in “Biocompatibility of Clinical Implant Material” (CRC Press, Boca Ratón, Florida, 1981) p. 99.

    Google Scholar 

  27. B. Kasemo, J. Prosthet. Dent. 49 (1983) 832.

    Google Scholar 

  28. P. Bianco, P. Ducheyne and J. M. Cuckler, Biomaterials 17 (1996) 1937.

    Google Scholar 

  29. A. B. Ferguson, Jr, Y. Akahoshi, P. G. Laing and E. S. Hodge, J. Bone Joint Surg. Am. 44 (1962) 323.

    Google Scholar 

  30. J. L. Woodman, J. J. Jacobs, J. O. Galante and R. M. Urban, J. Orthop. Res. 4 (1984) 421.

    Google Scholar 

  31. J. Jacobs, M. D. Skipor, J. Black, R. M. Urban and J. O. Galante, J. Bone Joint Surg. Am. 73 (1991) 1475.

    Google Scholar 

  32. H. Schliephake, G. Reiss, R. Urban, F. W. Neukam and S. Guckel, Int. J. Oral Maxillofac. Implants 8 (1993) 502.

    Google Scholar 

  33. C. A. Engh, Jr, K. D. Moore, T. N. Vinh and G. A. Engh, J. Bone Joint Surg. Am. 79 (1997) 1721.

    Google Scholar 

  34. R. Urban, J. Jacobs, M. Tomlinson, J. Gavrilovic, J. Black and M. Peoch'h, ibid. 82 (2000) 457.

    Google Scholar 

  35. D. G. Olmedo, M. B. Guglielmotti, R. L. Cabrini, J. Mater. Sci. Mater. Med. 13 (2002) 793.

    Google Scholar 

  36. U. E. Pazzaglia, C. Minoia, L. Ceciliani and C. Riccardi, Acta Othop. Scand. 54 (1983) 574.

    Google Scholar 

  37. A. Koegel and J. Black, J. Biomed. Mater. Res. 18 (1984) 513.

    Google Scholar 

  38. J. L. Woodman, J. Black and S. A. Jimenez, ibid. 18 (1984) 99.

    Google Scholar 

  39. K. Merrit, S. A. Brown and N. A. Sharkey, ibid. 18 (1984) 1005.

    Google Scholar 

  40. K. Merrit, S. A. Brown, L. J. Farnsworth and T. D. Crown, in “Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications” (American Society for Testing Materials, 1987) p. 163.

  41. A. C. Alfrey, in “Aluminum Health. A Critical Review”, edited by H. J. Gitelman (New York, 1989) p. 101.

  42. G. Meachin and D. F. Williams, J. Biomed. Mater. Res. 7 (1973) 555.

    Google Scholar 

  43. R. T. Bothe, K. E. Beaton and H. A. Davenport, Surg. Gynecol. Obstet. 71 (1940) 598.

    Google Scholar 

  44. P. G. Laing, A. B. Ferguson Jr and E. S. Hodge, J. Biomed. Mater. Res. 1 (1967) 135.

    Google Scholar 

  45. S. A. Brown, K. Merrit, L. Farnsworth and T. Crowe, in “Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications” (American Society for Testing Materials, 1987) p. 163.

  46. R. W. Legget, Health Phys. 57 (1989) 365.

    Google Scholar 

  47. D. C. Smith, S. Lugowsky, A. Mchugh, D. Deporte, P. Watson and M. Chipman, Int. J. Oral Maxillofac. Implants 12 (1997) 828.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Olmedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmedo, D.G., Tasat, D., Guglielmotti, M.B. et al. Titanium transport through the blood stream. An experimental study on rats. Journal of Materials Science: Materials in Medicine 14, 1099–1103 (2003). https://doi.org/10.1023/B:JMSM.0000004007.26938.67

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000004007.26938.67

Keywords

Navigation