Skip to main content
Log in

Mitochondrial signaling pathways: A receiver/integrator organelle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Research over the last decade has extended the prevailing view of cell mitochondrial function well beyond its critical bioenergetic role in supplying ATP. Recently, it has been recognized that the mitochondria play a critical role in cell regulatory and signaling events, in the responses of cells to a multiplicity of physiological and genetic stresses, inter-organelle communication, cell proliferation and cell death. Nevertheless, a broad-based review on mitochondrial signaling is not presently available. To bridge that gap, this review examines the perspective of mitochondria as the receiver integrator and transmitter of signals, dissecting the multiple and interrelated signaling pathways at both the molecular and biochemical levels with particular focus on nuclear and cytoplasmic factors, fundamentally involved in the shaping of the organelles' responses. We examine evidence that the mitochondria act as a dynamic receiver and integrator of numerous translocated signaling proteins (including protein kinases and transcription factors), regulatory Ca2+ fluxes and membrane phospholipids as well the transmission of mitochondrial-generated oxidative stress and energy-related signaling. Novel experimental approaches studying mitochondrial signaling including cell studies using metabolic inhibitors and genetic stresses (e.g. mtDNA depletion) are discussed. While there is abundant interest and information concerning its integral role to apoptosis, mitochondrial signaling also plays a fundamental role in proliferative pathways, nutrient sensing, inter-organellar cross-talk and in the responses of cells to metabolic transition and physiological stresses which remain relatively unexplored. (Mol Cell Biochem 262: 1–16, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatefi Y: The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54: 1015–1069, 1985

    Article  PubMed  Google Scholar 

  2. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG: Sequence and organization of human mitochondrial genome. Nature 290: 457–465, 1981

    PubMed  Google Scholar 

  3. Attardi G, Schatz G: Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333, 1988

    PubMed  Google Scholar 

  4. Hood DA: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90: 1137–1157, 20

    PubMed  Google Scholar 

  5. Totland GK, Madsen L, Klementsen B, Vaagenes H, Kryvi H, Froyland L, Hexeberg S, Berge RK: Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids. Biol Cell 92: 317–329, 2000

    Article  PubMed  Google Scholar 

  6. Lundgren B, Meijer J, DePierre JW: Induction of cytosolic and microsomal epoxide hydrolases and proliferation of peroxisomes and mitochondria in mouse liver after dietary exposure to p-chlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid. Biochem Pharmacol 36: 815–821, 1987

    PubMed  Google Scholar 

  7. Weber K, Bruck P, Mikes Z, Kupper JH, Klingenspor M, Wiesner RJ: Glucocorticoid hormone stimulates mitochondrial biogenesis specifi-cally in skeletal muscle. Endocrinology 143: 177–184, 2002

    PubMed  Google Scholar 

  8. Williams RS, Garcia-Moll M, Mellor J, Salmons S, Harlan W: Adaptation of skeletal muscle to increased contractile activity. J Biol Chem 262: 2764–2767, 1987

    PubMed  Google Scholar 

  9. Nelson BD: Thyroid hormone regulation of mitochondrial function: Comments on the mechanism of signal transduction. Biochim Biophys Acta 1018: 275–277, 1990

    Article  PubMed  Google Scholar 

  10. Xia Y, Buja LM, Scarpulla RC, McMillin JB: Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proc Natl Acad Sci USA 94:11399–11404, 1997

    Article  PubMed  Google Scholar 

  11. Bogenhagen D, Clayton DA: The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells: Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem 249: 7991–7995, 1974

    PubMed  Google Scholar 

  12. Shadel GS, Clayton DA: Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66: 409–435, 1997

    Article  PubMed  Google Scholar 

  13. Kadenbach B, Stroh A, Becker A, Eckerskorn C, Lottspeich F: Tissueand species-specific expression of cytochrome coxidase isozymes in vertebrates. Biochim Biophys Acta 1015: 368–372, 1990

    Article  PubMed  Google Scholar 

  14. Lenka N, Vijayasarathy C, Mullick J, Avadhani NG: Structural organization and transcription regulation of nuclear genes encoding the mammalian cytochrome coxidase complex. Prog Nucleic Acid Res Mol Biol 61: 309–344, 1998

    PubMed  Google Scholar 

  15. Boveris A, Chance B: The mitochondrial generation of hydrogen peroxide. Biochem J 134: 707–716, 1973

    PubMed  Google Scholar 

  16. McLennan HR, Degli Esposti M: The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32: 153–162, 2000

    Article  PubMed  Google Scholar 

  17. Turrens JF: Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17: 3–8, 1997

    Article  PubMed  Google Scholar 

  18. Raha S, Robinson BH: Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25: 502–508, 2000

    Article  PubMed  Google Scholar 

  19. Richter C: Reactive oxygen and DNA damage in mitochondria. Mutat Res 275: 249–255, 1992

    Article  PubMed  Google Scholar 

  20. Richter C, Park JW, Ames BN: Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467, 1988

    PubMed  Google Scholar 

  21. Oldenburg O, Cohen MV, Yellon DM, Downey JM: Mitochondrial K(ATP) channels: Role in cardioprotection. Cardiovasc Res 55: 429—437, 2002

    Article  PubMed  Google Scholar 

  22. van Gurp M, Festjens N, van Loo G, Saelens X, Vandenabeele P: Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304: 487–497. 2003

    Article  PubMed  Google Scholar 

  23. Kroemer G: Mitochondrial control of apoptosis: An introduction. Biochem Biophys Res Commun 304: 433–435, 2003

    Article  PubMed  Google Scholar 

  24. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD: Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111: 331–342, 2002

    Article  PubMed  Google Scholar 

  25. Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G: The permeability transition pore complex: A target for apoptosis regulation by caspases and Bcl-2 related proteins. J Exp Med 187: 1261–1271, 1998

    Article  PubMed  Google Scholar 

  26. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B: The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366: 177–196, 1998

    Article  PubMed  Google Scholar 

  27. Schinder AF, Olson EC, Spitzer NC, Montal M: Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J NeuroSci 16: 6125–6133, 1996

    PubMed  Google Scholar 

  28. Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G: Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027–2031, 1998

    PubMed  Google Scholar 

  29. Gilde AJ, van der Lee KA, Willemsen PH, Chinetti G, van der Leij FR, van der Vusse GJ, Staels B, van Bilsen M: Peroxisome proliferatoractivated receptor PPAR aand PPAR ß/dbut not PPAR ?, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 92: 518–524, 2003

    Article  PubMed  Google Scholar 

  30. Goffart S, Wiesner RJ: Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol 88: 33–40, 2003

    Article  PubMed  Google Scholar 

  31. Scarpulla RC: Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576: 1–14, 2002

    Article  PubMed  Google Scholar 

  32. Barger PM, Kelly DP: PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10: 238–245, 2000

    Article  PubMed  Google Scholar 

  33. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly D:. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106: 847—856, 2000

    Google Scholar 

  34. Wu H, Kanatous SB, Thurmond FA, GallardoT, Isotani E, Bassel-Duby R, Williams RS: Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296: 349–352, 2002.

    Article  PubMed  Google Scholar 

  35. Li H, Kolluri SK, Gu J, Dawson MI, Cao X, Hobbs PD, Lin B, Chen G, Lu J, Lin F, Xie Z, Fontana JA, Reed JC, Zhang X: Cytochrome crelease and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289: 1159–1164, 2000

    Article  PubMed  Google Scholar 

  36. Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, Bolli R, Ping P: Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: Enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 90: 390–397, 2002

    Article  PubMed  Google Scholar 

  37. Baines CP, Song CX, ZhengYT, Wang GW, Zhang J, Wang OL, GuoY, Bolli R, Cardwell EM, Ping P: Protein kinase Cepsilon interacts with 14 and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92: 873–880, 2003

    Article  PubMed  Google Scholar 

  38. Majumder PK, Mishra NC, Sun X, Bharti A, Kharbanda S, Saxena S, Kufe D: Targeting of protein kinase C delta to mitochondria in the oxidative stress response. Cell Growth Differ 12: 465–470, 2001

    PubMed  Google Scholar 

  39. Sumitomo M, Ohba M, Asakuma J, Asano T, Kuroki T, Asano T, Hayakawa M: Protein kinase C delta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest 109: 827–836, 2002

    Article  PubMed  Google Scholar 

  40. Caruso M, Maitan MA, Bifulco G, Miele C, Vigliotta G, Oriente F, Formisano P, Beguinot F: Activation and mitochondrial translocation of protein kinase C delta are necessary for insulin stimulation of pyruvate dehydrogenase complex activity in muscle and liver cells. J Biol Chem 276: 45088–45097, 2001

    Article  PubMed  Google Scholar 

  41. Majumder PK, Pandey P, Sun X, Cheng K, Datta R, Saxena S, Kharbanda S, Kufe D: Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome C release and apoptosis. J Biol Chem 275: 21793–21796, 2000

    Article  PubMed  Google Scholar 

  42. Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Munshi N, Kharbanda S, Anderson KC: JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 278: 17593–17596, 2003

    Article  PubMed  Google Scholar 

  43. Ginsberg MD, Feliciello A, Jones JK, Avvedimento EV, Gottesman ME: PKA-dependent binding of mRNA to the mitochondrial AKAP121 protein. J Mol Biol 327: 885–897, 2003

    Article  PubMed  Google Scholar 

  44. Affaitati A, Cardone L, de Cristofaro T, Carlucci A, Ginsberg MD, Varrone S, Gottesman ME, Avvedimento EV, Feliciello A: Essential role of A-kinase anchor protein 121 for cAMP signaling to mitochondria. J Biol Chem 278: 4286–4294, 2003

    Article  PubMed  Google Scholar 

  45. Papa S: The NDUFS4 nuclear gene of complex I of mitochondria and the cAMP cascade. Biochim Biophys Acta 1555: 147–153, 2002

    Article  PubMed  Google Scholar 

  46. Lee I, Bender E, Kadenbach B: Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome C oxidase. Mol Cell Biochem 234, 235: 63–70, 2002

    Article  Google Scholar 

  47. Salvi M, Brunati AM, Bordin L, La Rocca N, Clari G, Toninello A: Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. Biochim Biophys Acta 1589: 181–195. 2002

    Article  PubMed  Google Scholar 

  48. Yuryev A, Ono M, Goff SA, Macaluso F, Wennogle LP: Isoformspecific localization of A-RAF in mitochondria. Mol Cell Biol 20: 4870–4878, 2000

    Article  PubMed  Google Scholar 

  49. Le Mellay V, Troppmair J, Benz R, Rapp UR: Negative regulation of mitochondrial VDAC channels by C-Raf kinase. BMC Cell Biol 3: 14, 2002

    Article  PubMed  Google Scholar 

  50. Thomson M: Evidence of undiscovered cell regulatory mechanisms: Phospho-proteins and protein kinases in mitochondria. Cell Mol Life Sci 59: 213–219, 2002

    Article  PubMed  Google Scholar 

  51. Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF: Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278: 27251—27255, 2003

    Article  PubMed  Google Scholar 

  52. Bykova NV, Egsgaard H, Moller IM: Identification of 14 newphosphoproteins involved in important plant mitochondrial processes. FEBS Lett 540: 141–146, 2003

    Article  PubMed  Google Scholar 

  53. Hojlund K, Wrzesinski K, Larsen PM, Fey SJ, Roepstorff P, Handberg A, Dela F, Vinten J, McCormack JG, Reynet C, Beck-Nielsen H: Proteome analysis reveals phosphorylation of ATP synthase-subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 278: 10436–10442, 2003

    Article  PubMed  Google Scholar 

  54. He H, Chen M, Scheffler NK, GibsonBW, Spremulli LL, Gottlieb RA: Phosphorylation of mitochondrial elongation factor Tu in ischemic myocardium: Basis for chloramphenicol-mediated cardioprotection. Circ Res 89: 461–467, 2001

    PubMed  Google Scholar 

  55. Cammarota M, Paratcha G, Bevilaqua LR, Levi de Stein M, Lopez M, Pellegrino de Iraldi A, Izquierdo I, Medina JH: Cyclic AMP-responsive element binding protein in brain mitochondria. J Neurochem 72: 2272—2277, 1999

    Article  PubMed  Google Scholar 

  56. Cogswell PC, Kashatus DF, Keifer JA, Guttridge DC, Reuther JY, Bristow C, Roy S, Nicholson DW, Baldwin AS: NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B. J Biol Chem 278: 2963–2968, 2003

    Article  PubMed  Google Scholar 

  57. Casas F, Rochard P, Rodier A, Cassar-Malek I, Marchal-Victorion S, Wiesner RJ, Cabello G, Wrutniak C: A variant form of the nuclear triiodothyronine receptor c-ErbAalpha1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol Cell Biol 19: 7913–7924, 1999

    PubMed  Google Scholar 

  58. Davis PJ, Davis FB: Nongenomic actions of thyroid hormone. Thyroid 6: 497–504, 1996

    PubMed  Google Scholar 

  59. Weber K, Bruck P, Mikes Z, Kupper JH, Klingenspor M, Wiesner RJ: Glucocorticoid hormone stimulates mitochondrial biogenesis specifi-cally in skeletal muscle. Endocrinology 143: 177–184, 2002

    PubMed  Google Scholar 

  60. Casas F, Daury L, Grandemange S, Busson M, Seyer P, Hatier R, Carazo A, Cabello G, Wrutniak-Cabello C: Endocrine regulation of mitochondrial activity: Involvement of truncated RXRalpha and c-Erb Aalpha1 proteins. FASEB J 17: 426–436, 2003

    Article  PubMed  Google Scholar 

  61. Casas F, Domenjoud L, Rochard P, Hatier R, Rodier A, Daury L, Bianchi A, Kremarik-Bouillaud P, Becuwe P, Keller J, Schohn H, Wrutniak-Cabello C, Cabello G, Dauca M: A 45 kDa protein related to PPAR-2, induced by peroxisome proliferators, is located in the mitochondrial matrix. FEBS Lett 478: 4–8, 2000

    Article  PubMed  Google Scholar 

  62. Elfering SL, Sarkela TM, Giulivi C: Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 277: 38079–38086, 2002

    Article  PubMed  Google Scholar 

  63. RioboNA, Melani M, Sanjuan N, Fiszman ML, Gravielle MC, Carreras MC, Cadenas E, Poderoso JJ: The modulation of mitochondrial nitricoxide synthase activity in rat brain development. J Biol Chem 277: 42447–42455, 2002

    Article  PubMed  Google Scholar 

  64. Carreras MC, Peralta JG, Converso DP, Finocchietto PV, Rebagliati I, Zaninovich AA, Poderoso JJ: Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O2 uptake. Am J Physiol Heart Circ Physiol 281: H2282–H2288, 2001

    PubMed  Google Scholar 

  65. Lacza Z, Puskar M, Figueroa JP, Zhang J, Rajapakse N, Busija DW: Mitochondrial nitric oxide synthase is constitutively active and is functionally upregulated in hypoxia. Free Radic Biol Med 31: 1609–1615, 2001

    Article  PubMed  Google Scholar 

  66. Escames G, Leon J, Macias M, Khaldy H, Acuna-Castroviejo D: Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J 17: 932–934, 2003

    PubMed  Google Scholar 

  67. Brodsky SV, Gao S, Li H, Goligorsky MS: Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells. Am J Physiol Heart Circ Physiol 283: H2130–H2139, 2002

    PubMed  Google Scholar 

  68. Ghafourifar P, Mitochondrial nitricoxide synthase stimulation causes cytochrome C release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem 274: 31185–31188, 1999

    Article  PubMed  Google Scholar 

  69. Bustamante J, Bersier G, Badin RA, Cymeryng C, Parodi A, Boveris A: Sequential NO production by mitochondria and endoplasmic reticulum during induced apoptosis. Nitric Oxide 6: 333–341, 2002

    Article  PubMed  Google Scholar 

  70. Ghafourifar P, Schenk U, Klein SD, Richter C: Mitochondrial nitric-oxide synthase stimulation causes cytochrome C release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem 274: 31185–31188, 1999

    Article  PubMed  Google Scholar 

  71. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM: p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590, 2003

    Article  PubMed  Google Scholar 

  72. Sansome C, Zaika A, Marchenko ND, Moll UM: Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett 488: 110–115, 2001 15

    Article  PubMed  Google Scholar 

  73. Marchenko ND, Zaika A, Moll UM: Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275: 16202–16212, 2000

    PubMed  Google Scholar 

  74. Duchen M: Contributions of mitochondria to animal physiology: From homeostatic sensor to calcium signalling and cell death. J Physiology 516: 1–17, 1999

    Google Scholar 

  75. McCormack JG, Halestrap AP, Denton RM: Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70: 391–425, 1990

    PubMed  Google Scholar 

  76. Pacher P, Hajnoczky G: Propagation of the apoptotic signal by mitochondrial waves}. EMBO J 20: 4107–4121, 2001

    Article  PubMed  Google Scholar 

  77. Robb-Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP: Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 17: 4987–5000, 1998

    Article  PubMed  Google Scholar 

  78. Denton RM, McCormack JG: The calcium sensitive dehydrogenases of vertebrate mitochondria. Cell Calcium 7: 377–386, 1986

    Article  PubMed  Google Scholar 

  79. Das AM, Harris DA: Control of mitochondrial ATP synthase in rat cardiomyocytes: Effects of thyroid hormone. Biochim Biophys Acta 1096: 284–290, 1991

    Article  PubMed  Google Scholar 

  80. Jouaville LS, Ischas F, Mazat JP: Modulation of cell calcium signals by mitochondria. Mol Cell Biochem 184: 371–376, 1998

    Article  PubMed  Google Scholar 

  81. Rutter GA, Rizzuto R: Regulation of mitochondrial metabolism by ER Ca2+ release: An intimate connection. Trends 25: 215–221, 2000

    Article  Google Scholar 

  82. Rizzuto R: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: 1763–1766, 1998

    Article  PubMed  Google Scholar 

  83. Csordas G, Thomas AP, HajnoczkyG: Calcium signal transmission between ryanodine receptors and mitochondria in cardiac muscle. Trends Cardiovasc Med 11: 269–275, 2001

    Article  PubMed  Google Scholar 

  84. Gunter TE, Gunter KK: Uptake of calcium by mitochondria: Transport and possible function. IUBMB Life 52: 197–204, 2001

    Article  PubMed  Google Scholar 

  85. Buntinas L, Gunter KK, Sparagna GC, Gunter TE: The rapid mode of calcium uptake into heart mitochondria (RaM): Comparison to RaM in liver mitochondria. Biochim Biophys Acta 1504: 248–261, 2001

    Article  PubMed  Google Scholar 

  86. Crompton M, Costi A, Hayat L. Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J 245: 915–918, 1987

    PubMed  Google Scholar 

  87. Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE, Rizzuto R: Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159: 613–624, 2002

    Article  PubMed  Google Scholar 

  88. Hajnoczky G, Csordas G, Yi M: Old players in a new role: Mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 32: 363–377, 2002

    Article  PubMed  Google Scholar 

  89. Vance JE: Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265: 7248–7256, 1990

    PubMed  Google Scholar 

  90. Cui Z, Vance JE, Chen MH, Voelker DR, Vance DE: Cloning and expression of a novel phosphatidylethanolamine N-methyltransferase: A specific biochemical and cytological marker for a unique membrane fraction in rat liver. J Biol Chem 268: 6655–16663, 1993

    Google Scholar 

  91. Vidugiriene J, Sharma DK, Smith TK, Baumann NA, Menon AK: Segregation of glycosylphosphatidylinositol biosynthetic reactions in A subcompartment of the endoplasmic reticulum. J Biol Chem 274: 15203–15212, 1999

    Article  PubMed  Google Scholar 

  92. Voelker DR: New perspectives on the regulation of intermembrane glycerophospholipid traffic. J Lipid Res 44: 441–449, 2003

    Article  PubMed  Google Scholar 

  93. Kennedy SG, Kandel ES, Cross TK, Hay N: Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome C from mitochondria. Mol Cell Biol 19: 5800–5810, 1999

    PubMed  Google Scholar 

  94. Colavecchia M, Christie LN, Kanwar YS, Hood DA: Functional consequences of thyroid hormone-induced changes in the mitochondrial protein import pathway. Am J Physiol Endocrinol Metab 284: E29—E35, 2003

    PubMed  Google Scholar 

  95. Schneider JJ, Hood DA: Effect of thyroid hormone on mtHsp70 expression, mitochondrial import and processing in cardiac muscle. J Endocrinol 165: 9–17, 2000

    PubMed  Google Scholar 

  96. Chandel NS, Schumacker PT: Cellular oxygen sensing by mitochondria: Old questions, new insight. J Appl Physiol 88: 1880–1889, 2000

    Article  PubMed  Google Scholar 

  97. Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT: Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273: 11619–11624, 1998

    Article  PubMed  Google Scholar 

  98. Poderoso JJ, Peralta JG, Lisdero CL, Carreras MC, Radisic M, Schopfer F, Cadenas E, Boveris A: Nitric oxide regulates oxygen uptake and hydrogen peroxide release by isolated beating rat heart. Am J Physiol 274: C112–C119, 1998

    PubMed  Google Scholar 

  99. Brookes P, Darley-Usmar VM: Hypothesis: The mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: An alternative function for cytochrome C oxidase. Free Radic Biol Med 32: 370–374, 2002

    Article  PubMed  Google Scholar 

  100. Brown GC: Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome C oxidase. Biochim Biophys Acta 1504: 46–57, 2001

    Article  PubMed  Google Scholar 

  101. Barbe P, Larrouy D, Boulanger C, Chevillotte E, Viguerie N, Thalamas C, Trastoy MO, Roques M, Vidal H, Langin D: Triiodothyronine-mediated up-regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB J 15: 13–15, 2001

    PubMed  Google Scholar 

  102. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB: Fatty acid-induced apoptosis in neonatal cardiomyocytes: Redox signaling. Antioxid Redox Signal 3: 71–79, 2001

    Article  PubMed  Google Scholar 

  103. Herzig RP, Scacco S, Scarpulla RC: Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome C. J Biol Chem 275: 13134–13141, 2000

    Article  PubMed  Google Scholar 

  104. Dorward A, Sweet S, Moorehead R, Singh G: Mitochondrial contributions to cancer cell physiology: Redox balance, cell cycle, and drug resistance. J Bioenerg Biomembr 29: 385–392, 1997

    Article  PubMed  Google Scholar 

  105. Scheller K, Seibel P, Sekeris CE: Glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. Int Rev Cytol 222: 1–61, 2003

    Article  PubMed  Google Scholar 

  106. Enriquez JA, Fernandez-Silva P, Garrido-Perez N, Lopez-Perez MJ, Perez-Martos A, Montoya J: Direct regulation of mitochondrial RNA synthesis by thyroid hormone. Mol Cell Biol 19: 657–670, 1999

    PubMed  Google Scholar 

  107. Sterling K: Thyroid hormone action: Identification of the mitochondrial thyroid hormone receptor as adenine nucleotide translocase. Thyroid 1: 167–171, 1991

    PubMed  Google Scholar 

  108. Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN: Identification of a novel role for sphingolipid signaling in TNFalpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 34: 509–518, 2002

    Article  PubMed  Google Scholar 

  109. Martinou JC, Green DR: Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2: 63–67, 2001

    Article  PubMed  Google Scholar 

  110. Carrasco AJ, Dzeja PP, Alekseev AE, Pucar D, Zingman LV, Abraham MR, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B, Terzic A: Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci USA 98: 7623–7628, 2001

    Article  PubMed  Google Scholar 

  111. Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G: Signal transduction of ischemic preconditioning. Cardiovasc Res 52: 181—198, 2001

    Article  PubMed  Google Scholar 

  112. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio R, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ: Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive 16 K+ channels. Possible mechanism of cardioprotection. Circ Res 81: 1072–1082, 1997

    PubMed  Google Scholar 

  113. Halestrap AP: Regulation of mitochondrial metabolism through changes in matrix volume. Biochem Soc Trans 22: 522–529, 1994

    PubMed  Google Scholar 

  114. Mattson MP, Liu D: Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Commun 304: 539–549, 2003

    Article  PubMed  Google Scholar 

  115. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O'Rourke B: Cytoprotective role of Ca2+ activated K+ channels in the cardiac inner mitochondrial membrane. Science 298: 1029–1033, 2002

    Article  PubMed  Google Scholar 

  116. Boehm EA, Jones BE, Radda GK, Veech RL, Clarke K: Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol 280: H977—H983, 2001

    PubMed  Google Scholar 

  117. Zhou M, Lin BZ, Coughlin S, Vallega G, Pilch PF: UCP-3 expression in skeletal muscle: Effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Endocrinol Metab 279: E622–E629, 2000

    PubMed  Google Scholar 

  118. Moreno M, Lombardi A, De Lange P, Silvestri E, Ragni M, Lanni A, Goglia F: Fasting, lipid metabolism, and triiodothyronine in rat gastrocnemius muscle: Interrelated roles of uncoupling protein 3, mitochondrial thioesterase, and coenzyme Q. FASEB J 17: 1112–1114, 2003

    PubMed  Google Scholar 

  119. Schafer M, Schafer C, Ewald N, Piper HM, Noll T: Role of redox signaling in the autonomous proliferative response of endothelial cells to hypoxia. Circ Res 92: 1010–1015, 2003

    Article  PubMed  Google Scholar 

  120. Hoth M, Fanger CM, Lewis RS: Mitochondrial regulation of storeoperated calcium signaling in T lymphocytes. J Cell Biol 137: 633—648, 1997

    Article  PubMed  Google Scholar 

  121. Glitsch MD, Bakowski D, Parekh AB: Store-operated Ca(2+) entry depends on mitochondrial Ca(2+) uptake. EMBO J 21: 6744–6754, 2002

    Article  PubMed  Google Scholar 

  122. Maechler P: Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic beta-cells. Cell Mol Life Sci 59: 1803–1818, 2002

    PubMed  Google Scholar 

  123. McDaniel ML, Marshall CA, Pappan KL, Kwon G: Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells Diabetes 51: 2877–2885, 2002

    Google Scholar 

  124. Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML: Metabolic regulation by leucine of translation initiation through the mTORsignaling pathway by pancreatic beta-cells. Diabetes 50: 353–360, 2001

    PubMed  Google Scholar 

  125. Desai BN, Myers BR, Schreiber SL: FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci USA 99: 4319–4324, 2002

    Article  PubMed  Google Scholar 

  126. Tong WH, Rouault T: Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J 19: 5692–5700, 2000

    Article  PubMed  Google Scholar 

  127. Lill R, Diekert K, Kaut A, Lange H, PelzerW, Prohl C, Kispal G: The essential role of mitochondria in the biogenesis of cellular iron-sulfur proteins. Biol Chem 380: 1157–1166, 1999

    Article  PubMed  Google Scholar 

  128. Drapier JC: Interplay between NO and [Fe-S] clusters: Relevance to biological systems. Methods 11: 319–329, 1997

    Article  PubMed  Google Scholar 

  129. Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, Zaidi M, Kotlikoff M, Avadhani NG: Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: A novel mode of inter-organelle crosstalk. EMBO J 18: 522–533, 1999

    Article  PubMed  Google Scholar 

  130. Amuthan G, Biswas G, Ananadatheerthavarada HK, Vijayasarathy C, Shephard HM, Avadhani NG: Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 21: 7839–7849, 2002

    Article  PubMed  Google Scholar 

  131. Li K, Neufer PD, Williams RS: Nuclear responses to depletion of mitochondrial DNA in human cells. AmJ Physiol 269: C1265–C1270, 1995

    Google Scholar 

  132. Dey R, Moraes CT: Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem 275: 7087–7094, 2000

    Article  PubMed  Google Scholar 

  133. Arnould T, Vankoningsloo S, Renard P, Houbion A, Ninane N, Demazy C, Remacle J, Raes M: CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J 21: 53–63, 2002

    Article  PubMed  Google Scholar 

  134. Bae JS, Jang MK, Hong S, An WG, Choi YH, Kim HD, Cheong J: Phosphorylation of NF-kappa B by calmodulin-dependent kinase IV activates anti-apoptotic gene expression. Biochem Biophys Res Commun 305: 1094–1098, 2003

    Article  PubMed  Google Scholar 

  135. Szewczyk A, Wojtczak L: Mitochondria as a pharmacological target. Pharmacol Rev 54: 101–127, 2002

    Article  PubMed  Google Scholar 

  136. Akao M, O'Rourke B, Kusuoka H, Teshima Y, Jones SP, Marbán E: Differential actions of cardioprotective agents on the mitochondrial death pathway. Circ Res 92: 195–202, 2003

    Article  PubMed  Google Scholar 

  137. Marin-Garcia J, Goldenthal MJ: Mitochondria play a critical role in cardioprotection. J Card Fail 10: 55–66, 2004

    Article  PubMed  Google Scholar 

  138. Marin-Garcia J, Goldenthal MJ, MoeGW: Selective endothelin receptor blockade reverses mitochondrial dysfunction in canine heart failure. J Card Fail 8: 326–332, 2002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldenthal, M.J., Marín-García, J. Mitochondrial signaling pathways: A receiver/integrator organelle. Mol Cell Biochem 262, 1–16 (2004). https://doi.org/10.1023/B:MCBI.0000038228.85494.3b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000038228.85494.3b

Navigation