Skip to main content
Log in

Regulation of the Cellular Content of the Organic Osmolyte Taurine in Mammalian Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hoffmann, E. K. and Dunham, P. B. 1995. Membrane mechanisms and intracellular signalling in cell volume regulation. Int. Rev. Cytol. 161:173–262.

    Google Scholar 

  2. Krogh, A. 1939. Osmotic regulation in aquatic animals. Dover Publication, Inc.

  3. Bustamante, J., Lobo, M. V., Alonso, F. J., Mukala, N. T., Gine, E., Solis, J. M., Tamarit-Rodriguez, J., and Martin del Rio, R. 2001. An osmotic-sensitive taurine pool is localized in rat pancreatic islet cells containing glucagon and somatostatin. Am. J. Physiol. Endocrinol. Metab. 281:E1275–E1285.

    Google Scholar 

  4. Grunewald, R. W., Oppermann, M., Schettler, V., Fiedler, G. M., Jehle, P. M., and Schuettert, J. B. 2001. Polarized function of thick ascending limbs of Henle cells in osmoregulation. Kidney Int. 60:2290–2298.

    Google Scholar 

  5. Pasantes-Morales, H., Alavez, S., Sanchez Olea, R., and Moran, J. 1993. Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochem. Res. 18: 445–452.

    Google Scholar 

  6. Roy, G. and Malo, C. 1992. Activation of amino acid diffusion by a volume increase in cultured kidney (MDCK) cells. J. Membr. Biol. 130:83–90.

    Google Scholar 

  7. Moran, J., Miranda, D., Pena-Segura, C., and Pasantes-Morales, H. 1997. Volume regulation in NIH/3T3 cells not expressing P-glycoprotein: II. Chloride and amino acid fluxes. Am. J. Physiol. 272:C1804–C1809.

    Google Scholar 

  8. Huxtable, R. J. 1992. Physiological actions of taurine. Physiol Rev. 72:101–163.

    Google Scholar 

  9. Hoffmann, E. K. and Lambert, I. H. 1983. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. J. Physiol. 338:613–625.

    Google Scholar 

  10. Lang, F., Busch, G. L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E., and Haussinger, D. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306.

    Google Scholar 

  11. Pedersen, S. F., Mills, J. W., and Hoffmann, E. K. 1999. Role of the F-actin cytoskeleton in the RVD and RVI processes in Ehrlich ascites tumor cells. Exp. Cell Res. 252:63–74.

    Google Scholar 

  12. Marnela, K.-M., Timonen, M., and Lähdesmäki, P. 1984. Mass spectrometric analyses of brain synaptic peptides containing taurine. J. Neurochem. 43:1650–1653.

    Google Scholar 

  13. Kaya, K. and Sano, T. 1991. Definition of total biosynthesis pathway of taurolipids in Tetrahymena cells. Biochim. Biophys. Acta 1084:101–104.

    Google Scholar 

  14. Gaull, G. E. 1989. Taurine in pediatric nutrition: Review and update. Pediatrics 83:433–442.

    Google Scholar 

  15. Han, X., Budreau, A. M., and chesney, R. W. 2000. Identification of promoter elements involved in adaptive regulation of the taurine transporter gene: Role of cytosolic Ca2+ signaling. Adv. Exp. Med. Biol. 483:535–544.

    Google Scholar 

  16. Huxtable, R. J. and Sebring, L. A. 1986. Towards a unifying theory for the actions of taurine. Trends Pharmacol. Sci. 7:481–485.

    Google Scholar 

  17. Lombardini, J. B. 1991. Taurine: Retinal function. Brain Res. Brain Res. Rev. 16:151–169.

    Google Scholar 

  18. Kromphardt, H. 1965. On pH dependibility of transport of neutral amino acids in Ehrlich ascites tumor cells. Biochem. Z. 343: 283–293.

    Google Scholar 

  19. Lambert, I. H. 1984. Na-dependent taurine uptake in Ehrlich ascites tumor cells. Mol. Physiol. 6:233–246.

    Google Scholar 

  20. Lambert, I. H. 1985. Taurine transport in Ehrlich ascites tumour cells: Specificty and chloride dependence. Mol. Physiol. 7: 323–332.

    Google Scholar 

  21. Mollerup, J. and Lambert, I. H. 1998. Calyculin A modulates the kinetic constants for the Na+-coupled taurine transport in Ehrlich ascites tumour cells. Biochim. Biophys. Acta 1371:335–344.

    Google Scholar 

  22. Lill, H. and Nelson, N. 1998. Homologies and family relationships among Na+/Cl neurotransmitter transporters. Methods Enzymol. 296:425–436.

    Google Scholar 

  23. Jhiang, S. M., Fithian, L., Smanik, P., McGill, J., Tong, Q., and Mazzaferri, E. L. 1993. Cloning of the human taurine transporter and characterization of taurine uptake in thyroid cells. FEBS Lett. 318:139–144.

    Google Scholar 

  24. Uchida, S., Kwon, H. M., Yamauchi, A., Preston, A. S., Marumo, F., and Handler, J. S. 1992. Molecular cloning of the cDNA for an MDCK cell Na+-and Cl-dependent taurine transporter that is regulated by hypertonicity. Proc. Natl. Acad. Sci. USA 89: 8230–8234.

    Google Scholar 

  25. Vinnakota, S., Qian, X., Egal, H., Sarthy, V., and Sarkar, H. K. 1997. Molecular characterization and in situ localization of a mouse retinal taurine transporter. J. Neurochem. 69:2238–2250.

    Google Scholar 

  26. Takeuchi, K., Toyohara, H., and Sakaguchi, M. 2000. A hyperosmotic stress-induced mRNA of carp cell encodes Na+-and Cl-dependent high affinity taurine transporter. Biochim. Biophys. Acta 1464:219–230.

    Google Scholar 

  27. Hruska, R. E., Padjen, A., Bressler, R., and Yamamura, H. I. 1978. Taurine: Sodium-dependent, high-affinity transport into rat brain synaptosomes. Mol. Pharmacol. 14:77–85.

    Google Scholar 

  28. Martin, D. L. and Shain, W. 1979. High affinity transport of taurine and beta-alanine and low affinity transport of gamma-aminobutyric acid by a single transport system in cultured glioma cells. J. Biol. Chem. 254:7076–7084.

    Google Scholar 

  29. Holopainen, I. and Kontro, P. 1984. Taurine and hypotaurine transport by a single system in cultured neuroblastoma cells. Acta Physiol Scand. 122:381–386.

    Google Scholar 

  30. Barakat, L., Wang, D., and Bordey, A. 2002. Carrier-mediated uptake and release of taurine from Bergmann glia in rat cerebellar slices. J. Physiol. 541:753–767.

    Google Scholar 

  31. Jones, D. P., Miller, L. A., and Chesney, R. W. 1993. Polarity of taurine transport in cultured renal epithelial cell lines: LLC-PK1 and MDCK. Am. J. Physiol. 265:F137–F145.

    Google Scholar 

  32. Wersinger, C., Rebel, G., and Lelong-Rebel, I. H. 2000. Detailed study of the different taurine uptake systems of colon LoVo MDR and non-MDR cell lines. Amino Acids 19:667–685.

    Google Scholar 

  33. Takahashi, K., Azuma, M., Yamada, T., Ohyabu, Y., Takahashi, K., Schaffer, S. W., and Azuma, J. 2003. Taurine transporter in primary cultured neonatal rat heart cells: A comparison between cardiac myocytes and nonmyocytes. Biochem. Pharmacol. 65: 1181–1187.

    Google Scholar 

  34. Keep, R. F. and Xiang, J. 1996. Choroid plexus taurine transport. Brain Res. 715:17–24.

    Google Scholar 

  35. Poulsen, K. A., Litman, T., Eriksen, J., Mollerup, J., and Lambert, I. H. 2002. Downregulation of taurine uptake in multidrug resistant Ehrlich ascites tumor cells. Amino Acids 22:333–350.

    Google Scholar 

  36. Wolff, N. A. and Kinne, R. 1988. Taurine transport by rabbit kidney brush-border membranes: Coupling to sodium, chloride, and the membrane potential. J. Membr. Biol. 102:131–139.

    Google Scholar 

  37. Miyamoto, Y., Tiruppathi, C., Ganapathy, V., and Leibach, F. H. 1989. Active transport of taurine in rabbit jejunal brush-border membrane vesicles. Am. J. Physiol. 257:G65–G72.

    Google Scholar 

  38. Turner, R. J. 1983. Quantitative studies of cotransport systems: Models and vesicles. J. Membr. Biol. 76:1–15.

    Google Scholar 

  39. Harvey, B. J. and Ellory, J. C. 1988. Stoechiometry of taurine transport by the β-system in pigeon erythrocytes. Biochem. Soc. Trans. 16:555–556.

    Google Scholar 

  40. Preston, R. L. and Chen, C. W. 1989. Inhibition of sodium-dependent taurine transport in red blood cells from the marine polychaete, Glycera dibranchiata, after exposure to mercury. Bull. Environ. Contam. Toxicol. 42:620–627.

    Google Scholar 

  41. Thoroed, S. M. and Fugelli, K. 1993. Characterization of the Na-dependent taurine influx in flounder erythrocytes. J. Comp. Physiol. 163:307–316.

    Google Scholar 

  42. Sakai, S., Tosake, T., Tasaka, J., Hashigushi, T., and Yoshihama, I. 1989. Taurine uptake by glial cells in the bullfrog symphathetic ganglia. Neurochem. Int. 14:193–198.

    Google Scholar 

  43. Stein, W. D. 1986. Intrinsic, apparent, and effective affinities of co-and countertransport systems. Am. J. Physiol. 250:C523–C533.

    Google Scholar 

  44. Tamai, I., Senmaru, M., Terasaki, T., and Tsuji, A. 1995. Na+-and Cl-dependent transport of taurine at the blood-brain barrier. Biochem. Pharmacol. 50:1783–1793.

    Google Scholar 

  45. Uchida, S., Kwon, H. M., Preston, A. S., and Handler, J. S. 1991. Expression of Madin-Darby canine kidney cell Na+-and Cl+-dependent taurine transporter in Xenopus laevis oocytes. J. Biol. Chem. 266:9605–9609.

    Google Scholar 

  46. Lambert, I. H., Hoffmann, E. K., and Jorgensen, F. 1989. Membrane potential, anion and cation conductances in Ehrlich ascites tumor cells. J. Membr. Biol. 111:113–131.

    Google Scholar 

  47. Cabantchik, Z. I. and Greger, R. 1992. Chemical probes for anion transporters of mammalian cell membranes. Am. J. Physiol. 262: C803–C827.

    Google Scholar 

  48. Zelikovic, I. and Chesney, R. W. 1989. Ionic requirements for amino acid transport. Am. J. Kidney Dis. 14:313–316.

    Google Scholar 

  49. Bogé, G., Roche, H., and Pérés, G. 1985. Role of chloride ions in glycine transport in a sea fish, the bass (Dicentrarchus labrax). Biochim. Biophys. Acta 820:122–130.

    Google Scholar 

  50. Wolff, N. A., Perlman, D. F., and Goldstein, L. 1986. Ionic requirements of peritubular taurine transport in Fundulus kidney. Am. J. Physiol. 250:R984–R990.

    Google Scholar 

  51. Loo, D. D., Eskandari, S., Boorer, K. J., Sarkar, H. K., and Wright, E. M. 2000. Role of Cl in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J. Biol. Chem. 275:37414–37422.

    Google Scholar 

  52. Lambert, I. H. and Hoffmann, E. K. 1993. Regulation of taurine transport in Ehrlich ascites tumor cells. J. Membr. Biol. 131:67–79.

    Google Scholar 

  53. Barnard, J. A., Thaxter, S., Kikuchi, K., and Ghishan, F. K. 1988. Taurine transport by rat intestine. Am. J. Physiol. 254:G334–G338.

    Google Scholar 

  54. Liu, Q. R., Lopez-Corcuera, B., Nelson, H., Mandiyan, S., and Nelson, N. 1992. Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc. Natl. Acad. Sci. USA 89:12145–12149.

    Google Scholar 

  55. Loo, D. D., Hirsch, J. R., Sarkar, H. K., and Wright, E. M. 1996. Regulation of the mouse retinal taurine transporter (TAUT) by protein kinases in Xenopus oocytes. FEBS Lett. 392:250–254.

    Google Scholar 

  56. Han, X., Budreau, A. M., and Chesney, R. W. 1996. Role of conserved peptide in taurine transporter inactivation modulated by protein kinase C. J. Am. Soc. Nephrol. 7:2088–2096.

    Google Scholar 

  57. Xu, Y. X., Wagenfeld, A., Yeung, C. H., Lehnert, W., and Cooper, T. G. 2003. Expression and location of taurine transporters and channels in the epididymis of infertile c-ros receptor tyrosine kinase-deficient and fertile heterozygous mice. Mol. Reprod. Dev. 64:144–151.

    Google Scholar 

  58. Mollerup, J. and Lambert, I. H. 1996. Phosphorylation is involved in the regulation of the taurine influx via the beta-system in Ehrlich ascites tumor cells. J. Membr. Biol. 150:73–82.

    Google Scholar 

  59. Tchoumkeu-Nzouessa, G. C. and Rebel, G. 1996. Regulation of taurine transport in rat astrocytes by protein kinase C: Role of calcium and calmodulin. Am. J. Physiol. 270:C1022–C1028.

    Google Scholar 

  60. Qian, X., Vinnakota, S., Edwards, C., and Sarkar, H. K. 2000. Molecular characterization of taurine transport in bovine aortic endothelial cells. Biochim. Biophys. Acta 1509:324–334.

    Google Scholar 

  61. Han, X., Budreau, A. M., and Chesney, R. W. 1999. Ser-322 is a critical site for PKC regulation of the MDCK cell taurine transporter (pNCT). J. Am. Soc. Nephrol. 10:1874–1879.

    Google Scholar 

  62. Huxtable, R. J., Chubb, J., and Azari, J. 1980. Physiological and experimental regulation of taurine content in the heart. Fed. Proc. 39:2685–2690.

    Google Scholar 

  63. Larsen, A. K., Jensen, B. S., and Hoffmann, E. K. 1994. Activation of protein kinase C during cell volume regulation in Ehrlich mouse ascites tumor cells. Biochim. Biophys. Acta 1222:477–482.

    Google Scholar 

  64. Sanchez-Olea, R., Moran, J., and Pasantes-Morales, H. 1992. Changes in taurine transport evoked by hyperosmolarity in cultured astrocytes. J. Neurosci. Res. 32:86–92.

    Google Scholar 

  65. Shimizu, M. and Satsu, H. 2000. Physiological significance of taurine and the taurine transporter in intestinal epithelial cells. Amino Acids 19:605–614.

    Google Scholar 

  66. Miyakawa, H., Woo, S. K., Dahl, S. C., Handler, J. S., and Kwon, H. M. 1999. Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc. Natl. Acad. Sci. USA 96:2538–2542.

    Google Scholar 

  67. Woo, S. K., Dahl, S. C., Handler, J. S., and Kwon, H. M. 2000. Bidirectional regulation of tonicity-responsive enhancer binding protein in response to changes in tonicity. Am. J. Physiol. Renal Physiol. 278:F1006–F1012.

    Google Scholar 

  68. Nadkarni, V., Gabbay, K. H., Bohren, K. M., and Sheikh-Hamad, D. 1999. Osmotic response element enhancer activity: Regulation through p38 kinase and mitogen-activated extracellular signal-regulated kinase kinase. J. Biol. Chem. 274:20185–20190.

    Google Scholar 

  69. Dahl, S. C., Handler, J. S., and Kwon, H. M. 2001. Hypertonicity-induced phosphorylation and nuclear localization of the transcription factor TonEBP. Am. J. Physiol. Cell Physiol. 280:C248–C253.

    Google Scholar 

  70. Han, X., Chesney, R. W., Budreau, A. M., and Jones, D. P. 1996. Regulation of expression of taurine transport in two continous renal epithelial cell lines and inhibition of taurine transporter by a site-directed antibody. Adv. Exp. Med. Biol. 403:173–191.

    Google Scholar 

  71. Bitoun, M. and Tappaz, M. 2000. Taurine down-regulates basal and osmolarity-induced gene expression of its transporter, but not the gene expression of its biosynthetic enzymes, in astrocyte primary cultures. J. Neurochem. 75:919–924.

    Google Scholar 

  72. Han, X., Budreau, A. M., and Chesney, R. W. 2000. Cloning and characterization of the promoter region of the rat taurine transporter (TauT) gene. Adv. Exp. Med. Biol. 483:97–108.

    Google Scholar 

  73. Saransaari, P. and Oja, S. S. 1998. Mechanisms of ischemia-induced taurine release in mouse hippocampal slices. Brain Res. 807:118–124.

    Google Scholar 

  74. Pasantes-Morales, H., Moran, J., and Sanchez-Olea, R. 1992. Volume regulatory fluxes in glial and renal cells. Adv. Exp. Med. Biol. 315:361–368.

    Google Scholar 

  75. Ruhfus, B. and Kinne, R. K. 1996. Hypotonicity-activated efflux of taurine and myo-inositol in rat inner medullary collecting duct cells: Evidence for a major common pathway. Kidney Blood Press. Res. 19:317–324.

    Google Scholar 

  76. Lambert, I. H. 2003. Reactive oxygen species regulate swelling-induced taurine efflux in NIH3T3 mouse fibroblasts. J. Membr. Biol. 192:19–32.

    Google Scholar 

  77. Hoffmann, E. K., Lambert, I. H., and Simonsen, L. O. 1986. Separate, Ca2+-activated K+ and Cl transport pathways in Ehrlich ascites tumor cells. J. Membr. Biol. 91:227–244.

    Google Scholar 

  78. Hoffmann, E. K. and Hendil, K. B. 1976. The role of amino acids and taurine in isosmotic intracellular regulation in Ehrlich ascites mouse tumour cells. J. Comp. Physiol. 108:279–286.

    Google Scholar 

  79. Law, R. O. 1991. Amino acids as volume-regulatory osmolytes in mammalian cells. Comp. Biochem. Physiol. A 99:263–277.

    Google Scholar 

  80. Lambert, I. H. and Hoffmann, E. K. 1982. Amino acid metabolism and protein turnover under different osmotic conditions in Ehrlich ascites tumor cells. Mol. Physiol. 2:273–286.

    Google Scholar 

  81. Margalit, A., Livne, A. A., Funder, J., and Granot, Y. 1993. Initiation of RVD response in human platelets: Mechanical-biochemical transduction involves pertussis-toxin-sensitive G protein and phospholipase A2. J. Membr. Biol. 136:303–311.

    Google Scholar 

  82. Basavappa, S., Pedersen, S. F., Jørgensen, N. K., Ellory, J. C., and Hoffmann, E. K. 1998. Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells. J. Neurophysiol. 79:1441–1449.

    Google Scholar 

  83. Lambert, I. H. and Sepulveda, F. V. 2000. Swelling-induced taurine efflux from HeLa cells: Cell volume regulation. Adv. Exp. Med. Biol. 483:487–495.

    Google Scholar 

  84. Kudo, I. and Murakami, M. 2002. Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat. 68-69:3–58.

    Google Scholar 

  85. Hirabayashi, T. and Shimizu, T. 2000. Localization and regulation of cytosolic phospholipase A2. Biochim. Biophys. Acta 1488: 124–138.

    Google Scholar 

  86. Winstead, M. V., Balsinde, J., and Dennis, E. A. 2000. Calcium-independent phospholipase A2: Structure and function. Biochim. Biophys. Acta 1488:28–39.

    Google Scholar 

  87. Hanel, A. M., Schuttel, S., and Gelb, M. H. 1993. Processive interfacial catalysis by mammalian 85-kilodalton phospholipase A2 enzymes on product-containing vesicles: Application to the determination of substrate preferences. Biochemistry 32:5949–5958.

    Google Scholar 

  88. Atsumi, G., Murakami, M., Kojima, K., Hadano, A., Tajima, M., and Kudo, I. 2000. Distinct roles of two intracellular phospholipase A2s in fatty acid release in the cell death pathway: Proteolytic fragment of type IVA cytosolic phospholipase A inhibits stimulus-induced arachidonate release, whereas that of type VI Ca2+-independent phospholipase A2 augments spontaneous fatty acid release. J. Biol. Chem. 275:18248–18258.

    Google Scholar 

  89. Martinez, J. and Moreno, J. J. 2001. Role of Ca2+-independent phospholipase A2 on arachidonic acid release induced by reactive oxygen species. Arch. Biochem. Biophys. 392:257–262.

    Google Scholar 

  90. Henderson, L. M., Chappell, J. B., and Jones, O. T. 1989. Superoxide generation is inhibited by phospholipase A2 inhibitors: Role for phospholipase A2 in the activation of the NADPH oxidase. Biochem. J. 264:249–255.

    Google Scholar 

  91. Street, I. P., Lin, H. K., Laliberte, F., Ghomashchi, F., Wang, Z., Perrier, H., Tremblay, N. M., Huang, Z., Weech, P. K., and Gelb, M. H: 1993. Slow-and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry 32:5935–5940.

    Google Scholar 

  92. Thoroed, S. M., Lauritzen, L., Lambert, I. H., Hansen, H. S., and Hoffmann, E. K. 1997. Cell swelling activates phospholipase A2 in Ehrlich ascites tumor cells. J. Membr. Biol. 160:47–58.

    Google Scholar 

  93. Tinel, H., Kinne-Saffran, E., and Kinne, R. K. 2000. Calcium signalling during RVD of kidney cells. Cell Physiol. Biochem. 10: 297–302.

    Google Scholar 

  94. Pedersen, S., Lambert, I. H., Thoroed, S. M., and Hoffmann, E. K. 2000. Hypotonic cell swelling induces translocation of the alpha isoform of cytosolic phospholipase A2 but not the gamma isoform in Ehrlich ascites tumor cells. Eur. J. Biochem. 267: 5531–5539.

    Google Scholar 

  95. Sierra-Honigmann, M. R., Bradley, J. R., and Pober, J. S. 1996. Cytosolic phospholipase A2 is in the nucleus of subconfluent endothelial cells but confined to the cytoplasm of confluent endothelial cells and redistributes to the nuclear envelope and cell junctions upon histamine stimulation. Lab. Invest. 74:684–695.

    Google Scholar 

  96. Pedersen, S. F., Hoffmann, E. K., and Mills, J. W. 2001. The cytoskeleton and cell volume regulation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 130:385–399.

    Google Scholar 

  97. Peters-Golden, M., Song, K., Marshall, T., and Brock, T. 1996. Translocation of cytosolic phospholipase A2 to the nuclear envelope elicits topographically localized phospholipid hydrolysis. Biochem. J. 318:797–803.

    Google Scholar 

  98. Evans, J. H., Spencer, D. M., Zweifach, A., and Leslie, C. C. 2001. Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes. J. Biol. Chem. 276: 30150–30160.

    Google Scholar 

  99. Jørgensen, N. K., Christensen, S., Harbak, H., Brown, A. M., Lambert, I. H., Hoffmann, E. K., and Simonsen, L. O. 1997. On the role of calcium in the regulatory volume decrease (RVD) response in Ehrlich mouse ascites tumor cells. J. Membr. Biol. 157:281–299.

    Google Scholar 

  100. Estevez, A. Y., O'Regan, M. H., Song, D., and Phillis, J. W. 1999. Hyposmotically induced amino acid release from the rat cerebral cortex: Role of phospholipases and protein kinases. Brain Res. 844:1–9.

    Google Scholar 

  101. Claesson, H. E. and Dahlen, S. E. 1999. Asthma and leukotrienes: Antileukotrienes as novel anti-asthmatic drugs. J. Intern. Med. 245:205–227.

    Google Scholar 

  102. Ordway, R. W., Singer, J. J., and Walsh, J. V., Jr. 1991. Direct regulation of ion channels by fatty acids. Trends Neurosci. 14: 96–100.

    Google Scholar 

  103. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M., and Honore, E. 2000. Lysophospholipids open the two-pore domain mechanogated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275: 10128–10133.

    Google Scholar 

  104. Lambert, I. H. 1991. Effect of arachidonic acid on conductive Na, K and anion transport in Ehrlich ascites tumor cells under isotonic and hypotonic conditions. Cell. Physiol. Biochem. 1: 177–194.

    Google Scholar 

  105. Lambert, I. H. 1998. Regulation of the taurine content in Ehrlich ascites tumour cells. Adv. Exp. Med. Biol. 442:269–276.

    Google Scholar 

  106. Ruhfus, B., Tinel, H., and Kinne, R. K. 1996. Role of G-proteins in the regulation of organic osmolyte efflux from isolated rat renal inner medullary collecting duct cells. Pflugers Arch. 433:35–41.

    Google Scholar 

  107. Lambert, I. H. 1987. Effect of arachidonic acid, fatty acids, prostaglandins, and leukotrienes on volume regulation in Ehrlich ascites tumor cells. J. Membr. Biol. 98:207–221.

    Google Scholar 

  108. Sanchez-Olea, R., Morales-Mulia, M., Moran, J., and Pasantes-Morales, H. 1995. Inhibition by polyunsaturated fatty acids of cell volume regulation and osmolyte fluxes in astrocytes. Am. J. Physiol. 269:C96–102.

    Google Scholar 

  109. Hall, J. A., Kirk, J., Potts, J. R., Rae, C., and Kirk, K. 1996. Anion channel blockers inhibit swelling-activated anion, cation, and nonelectrolyte transport in HeLa cells. Am. J. Physiol. 271: C579–C588.

    Google Scholar 

  110. Rådmark, O. P. 2000. The molecular biology and regulation of 5-lipoxygenase. Am. J. Respir. Crit. Care Med. 161:S11–S15.

    Google Scholar 

  111. Nicosia, S., Capra, V., and Rovati, G. E. 2001. Leukotrienes as mediators of asthma. Pulm. Pharmacol. Ther. 14:3–19.

    Google Scholar 

  112. Spector, A. A., Gordon, J. A., and Moore, S. A. 1988. Hydroxyeicosatetraenoic acids (HETEs). Prog. Lipid Res. 27:271–323.

    Google Scholar 

  113. Brash, A. R. 1999. Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem. 274:23679–23682.

    Google Scholar 

  114. Rouzer, C. A., Ford-Hutchinson, A. W., Morton, H. E., and Gillard, J. W. 1990. MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes. J. Biol. Chem. 265:1436–1442.

    Google Scholar 

  115. Noguchi, M., Miyano, M., and Matsumoto, T. 1996. Physiochemical characterization of ATP binding to human 5-lipoxygenase. Lipids 31:367–371.

    Google Scholar 

  116. Werz, O., Burkert, E., Fischer, L., Szellas, D., Dishart, D., Samuelsson, B., Radmark, O., and Steinhilber, D. 2002. Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes. FASEB J. 16:1441–1443.

    Google Scholar 

  117. Lepley, R. A., Muskardin, D. T., and Fitzpatrick, F. A. 1996. Tyrosine kinase activity modulates catalysis and translocation of cellular 5-lipoxygenase. J. Biol. Chem. 271:6179–6184.

    Google Scholar 

  118. Mastrocola, T., Lambert, I. H., Kramhøft, B., Rugolo, M., and Hoffmann, E. K. 1993. Volume regulation in human fibroblasts: Role of Ca2+ and 5-lipoxygenase products in the activation of the Cl efflux. J. Membr. Biol. 136:55–62.

    Google Scholar 

  119. Lambert, I. H., Nielsen, J. H., Andersen, H. J., and ørtenblad, N. 2001. Cellular model for induction of drip loss in meat. J. Agric. Food Chem. 49:4876–4883.

    Google Scholar 

  120. ørtenblad, N., Young, J. F., Oksbjerg, N., Nielsen, J. H., and Lambert, I. H. 2003. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells. Am. J. Physiol. 284:C1362–C1373.

    Google Scholar 

  121. Furlong, T. J., Moriyama, T., and Spring, K. R. 1991. Activation of osmolyte efflux from cultured renal papillary epithelial cells. J. Membr. Biol. 123:269–277.

    Google Scholar 

  122. Margalit, A., Sofer, Y., Grossman, S., Reynaud, D., Pace-Asciak, C. R., and Livne, A. A. 1993. Hepoxilin A3 is the endogenous lipid mediator opposing hypotonic swelling of intact human platelets. Proc. Natl. Acad. Sci. USA 90:2589–2592.

    Google Scholar 

  123. Lambert, I. H. 1994. Eicosanoids and cell volume regulation. Pages 279–298, in Strange, K.(ed.), Cellular and molecular physiology of cell volume regulation. Boca Raton, Fla: CRC Press.

    Google Scholar 

  124. Lambert, I. H., Hoffmann, E. K., and Christensen, P. 1987. Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells. J. Membr. Biol. 98:247–256.

    Google Scholar 

  125. Lauritzen, L., Hoffmann, E. K., Hansen, H. S., and Jensen, B. 1993. Dietary n-3 and n-6 fatty acids are equipotent in stimulating volume regulation in Ehrlich ascites tumor cells. Am. J. Physiol. 264:C109–C117.

    Google Scholar 

  126. Lambert, I. H. 1989. Leukotriene-D4 induced cell shrinkage in Ehrlich ascites tumor cells. J. Membr. Biol. 108:165–176.

    Google Scholar 

  127. Jørgensen, N. K., Lambert, I. H., and Hoffmann, E. K. 1996. Role of LTD4 in the regulatory volume decrease response in Ehrlich ascites tumor cells. J. Membr. Biol. 151:159–173.

    Google Scholar 

  128. Hoffmann, E. K. 1999. Leukotriene D4 (LTD4) activates charybdotoxin-sensitive and-insensitive K+ channels in Ehrlich ascites tumor cells. Pflugers Arch. 438:263–268.

    Google Scholar 

  129. Hougaard, C., Niemeyer, M. I., Hoffmann, E. K., and Sepulveda, F. V. 2000. K+ currents activated by leukotriene D4 or osmotic swelling in Ehrlich ascites tumour cells. Pflugers Arch. 440: 283–294.

    Google Scholar 

  130. Strange, K., Morrison, R., Shrode, L., and Putnam, R. 1993. Mechanism and regulation of swelling-activated inositol efflux in brain glial cells. Am. J. Physiol. 265:C244–C256.

    Google Scholar 

  131. Diener, M. and Scharrer, E. 1993. The leukotriene D4 receptor blocker, SK&F 104353, inhibits volume regulation in isolated crypts from the rat distal colon. Eur. J. Pharmacol. 238:217–222.

    Google Scholar 

  132. Mignen, O., Le Gall, C., Harvey, B. J., and Thomas, S. 1999. Volume regulation following hypotonic shock in isolated crypts of mouse distal colon. J. Physiol. 515:501–510.

    Google Scholar 

  133. O'Connor, E. R. and Kimelberg, H. K. 1993. Role of calcium in astrocyte volume regulation and in the release of ions and amino acids. J. Neurosci. 13:2638–2650.

    Google Scholar 

  134. Shen, M. R., Chou, C. Y., Browning, J. A., Wilkins, R. J., and Ellory, J. C. 2001. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease. J. Physiol. 537:347–362.

    Google Scholar 

  135. Foskett, J. K., Wong, M. M., Sue, A. Quan, and Robertson, M. A. 1994. Isosmotic modulation of cell volume and intracellular ion activities during stimulation of single exocrine cells. J. Exp. Zool. 268:104–110.

    Google Scholar 

  136. Morales, M. S., Vaca, L., Hernandez, C. A., and Pasantes, M. H. 1998. Osmotic swelling-induced changes in cytosolic calcium do not affect regulatory volume decrease in rat cultured suspended cerebellar astrocytes. J. Neurochem. 71:2330–2338.

    Google Scholar 

  137. Grinstein, S. and Smith, J. D. 1990. Calcium-independent cell volume regulation in human lymphocytes: Inhibition by charybdotoxin. J. Gen. Physiol. 95:97–120.

    Google Scholar 

  138. Vitarella, D., DiRisio, D. J., Kimelberg, H. K., and Aschner, M. 1994. Potassium and taurine release are highly correlated with regulatory volume decrease in neonatal primary rat astrocyte cultures. J. Neurochem. 63:1143–1149.

    Google Scholar 

  139. Lang, F., Madlung, J., Siemen, D., Ellory, C., Lepple-Wienhues, A., and Gulbins, E. 2000. The involvement of caspases in the CD95 (Fas/Apo-1)-but not swelling-induced cellular taurine release from Jurkat T-lymphocytes. Pflugers Arch. 440:93–99.

    Google Scholar 

  140. Moran, J., Morales, M. S., Hernandez, C. A., and Pasantes, M. H. 1997. Regulatory volume decrease and associated osmolyte fluxes in cerebellar granule neurons are calcium independent. J. Neurosci. Res. 47:144–154.

    Google Scholar 

  141. Deleuze, C., Duvoid, A., and Hussy, N. 1998. Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J. Physiol. 507:463–471.

    Google Scholar 

  142. Katz, U., Lancaster, J. A., and Ellory, J. C. 2003. Hypotonic-induced transport pathways in Xenopus laevis erythrocytes: Taurine fluxes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 134:355–363.

    Google Scholar 

  143. Pierce, S. K. and Rowland-Faux, L. M. 1992. Ionomycin produces an improved volume recovery by an increased efflux of taurine from hypoosmotically stressed molluscan red blood cells. Cell Calcium 13:321–327.

    Google Scholar 

  144. Galietta, L. J., Falzoni, S., Di Virgilio, F., Romeo, G., and Zegarra-Moran, O. 1997. Characterization of volume-sensitive taurine-and Cl-permeable channels. Am. J. Physiol. 273: C57–C66.

    Google Scholar 

  145. Pedersen, S., Hoffmann, E. K., Hougaard, C., Jørgensen, N. K., Wybrandt, G. B., and Lambert, I. H. 1997. Leukotriene D4induced Ca2+ mobilization in Ehrlich ascites tumor cells. J. Membr. Biol. 155:61–73.

    Google Scholar 

  146. Sjølander, A., Gronroos, E., Hammarstrom, S., and Andersson, T. 1990. Leukotriene D4 and E4 induce transmembrane signaling in human epithelial cells: Single cell analysis reveals diverse pathways at the G-protein level for the influx and the intracellular mobilization of Ca2+. J. Biol. Chem. 265:20976–20981.

    Google Scholar 

  147. Adolfsson, J. L., Ohd, J. F., and Sjølander, A. 1996. Leukotriene D4-induced activation and translocation of the G-protein alpha i3-subunit in human epithelial cells. Biochem. Biophys. Res. Commun. 226:413–419.

    Google Scholar 

  148. Grønroos, E., Andersson, T., Schippert, A., Zheng, L., and Sjølander, A. 1996. Leukotriene D4-induced mobilization of intracellular Ca2+ in epithelial cells is critically dependent on activation of the small GTP-binding protein Rho. Biochem. J. 316:239–245.

    Google Scholar 

  149. Thodeti, C. K., Massoumi, R., Bindslev, L., and Sjolander, A. 2002. Leukotriene D4 induces association of active RhoA with phospholipase C-gammal in intestinal epithelial cells. Biochem. J. 365:157–163.

    Google Scholar 

  150. Kirk, J. and Kirk, K. 1994. Inhibition of volume-activated I-and taurine efflux from HeLa cells by P-glycoprotein blockers correlates with calmodulin inhibition. J. Biol. Chem. 269:29389–29394.

    Google Scholar 

  151. Huang, C. C., Chang, C. B., Liu, J. Y., Basavappa, S., and Lim, P. H. 2001. Effects of calcium, calmodulin, protein kinase C and protein tyrosine kinases on volume-activated taurine efflux in human erythroleukemia cells. J. Cell Physiol. 189:316–322.

    Google Scholar 

  152. Li, G., Liu, Y., and Olson, J. E. 2002. Calcium/calmodulin-modulated chloride and taurine conductances in cultured rat astrocytes. Brain Res. 925:1–8.

    Google Scholar 

  153. Jenkins, C. M., Wolf, M. J., Mancuso, D. J., and Gross, R. W. 2001. Identification of the calmodulin-binding domain of recombinant calcium-independent phospholipase A2beta: Implications for structure and function. J. Biol. Chem. 276:7129–7135.

    Google Scholar 

  154. Nielsen, C. K. and Lambert, I. H. 1998. Characterisation of the leukotriene D4 receptor in the Ehrlich ascites tumour cells. Acta Physiol. Scand. 163:P15.

    Google Scholar 

  155. Lambert, I. H. and Falktoft, B. 2001. Lysophosphatidylcholine-induced taurine release in HeLa cells involves protein kinase activity. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 130:577–584.

    Google Scholar 

  156. Tilly, B. C., van den Berghe, N., Tertoolen, L. G., Edixhoven, M. J., and de Jonge, H. R. 1993. Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J. Biol. Chem. 268:19919–19922.

    Google Scholar 

  157. Tilly, B. C., Edixhoven, M. J., van den, Berghe N., Bot, A. G., and de Jonge, H. R. 1994. Ca2+-Mobilizing hormones potentiate hypotonicity-induced activation of ionic conductances in Intestine 407 cells. Am. J. Physiol. 267:C1271–C1278.

    Google Scholar 

  158. Nilius, B. and Droogmans, G. 2003. Amazing chloride channels: An overview. Acta Physiol. Scand. 177:119–147.

    Google Scholar 

  159. Ballatori, N. and Boyer, J. L. 1997. ATP regulation of a swelling-activated osmolyte channel in skate hepatocytes. J. Exp. Zool. 279:471–475.

    Google Scholar 

  160. Ballatori, N. and Wang, W. 1997. Nordihydroguaiaretic acid depletes ATP and inhibits a swelling-activated, ATP-sensitive taurine channel. Am. J. Physiol. 272:C1429–C1436.

    Google Scholar 

  161. Wang, Y., Roman, R., Lidofsky, S. D., and Fitz, J. G. 1996. Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc. Natl. Acad. Sci. USA 93:12020–12025.

    Google Scholar 

  162. Okada, Y., Maeno, E., Shimizu, T., Dezaki, K., Wang, J., and Morishima, S. 2001. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J. Physiol. 532:3–16.

    Google Scholar 

  163. Junankar, P. R., Karjalainen, A., and Kirk, K. 2002. The role of P2Y1 purinergic receptors and cytosolic Ca2+ in hypotonically activated osmolyte efflux from a rat hepatoma cell line. J. Biol. Chem. 277:40324–40334.

    Google Scholar 

  164. Dutta, A. K., Okada, Y., and Sabirov, R. Z. 2002. Regulation of an ATP-conductive large-conductance anion channel and swelling-induced ATP release by arachidonic acid. J. Physiol. 542:803–816.

    Google Scholar 

  165. Braunstein, G. M., Roman, R. M., Clancy, J. P., Kudlow, B. A., Taylor, A. L., Shylonsky, V. G., Jovov, B., Peter, K., Jilling, T., Ismailov, I. I., Benos, D. J., Schwiebert, L. M., Fitz, J. G., and Schwiebert, E. M. 2001. Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation. J. Biol. Chem. 276:6621–6630.

    Google Scholar 

  166. Steinacker, P., Sternbach, H., Rohm, B., Walter, G., Thinnes, F. P., and Hilschmann, N. 1997. VDAC is involved in osmotically activated taurine-efflux in HeLa cells. Pflugers Arch. 433:R162.

    Google Scholar 

  167. Nilius, B., Sehrer, J., Viana, F., De Greef, C., Raeymaekers, L., Eggermont, J., and Droogmans, G. 1994. Volume-activated Cl currents in different mammalian non-excitable cell types. Pflugers Arch. 428:364–371.

    Google Scholar 

  168. Jackson, P. S. and Strange, K. 1995. Single-channel properties of a volume-sensitive anion conductance: Current activation occurs by abrupt switching of closed channels to an open state. J. Gen. Physiol. 105:643–660.

    Google Scholar 

  169. Ralevic, V. and Burnstock, G. 1998. Receptors for purines and pyrimidines. Pharmacol. Rev. 50:413–492.

    Google Scholar 

  170. van der Weyden, L., Adams, D. J., Luttrell, B. M., Conigrave, A. D., and Morris, M. B. 2000. Pharmacological characterisation of the P2Y11 receptor in stably transfected haematological cell lines. Mol. Cell Biochem. 213:75–81.

    Google Scholar 

  171. Fredholm, B. B., Abbracchio, M. P., Burnstock, G., Dubyak, G. R., Harden, T. K., Jacobson, K. A., Schwabe, U., and Williams, M. 1997. Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol. Sci. 18:79–82.

    Google Scholar 

  172. Pedersen, S. F., Pedersen, S., Lambert, I. H., and Hoffmann, E. K. 1998. P2 receptor-mediated signal transduction in Ehrlich ascites tumor cells. Biochim. Biophys. Acta 1374:94–106.

    Google Scholar 

  173. Pedersen, S., Pedersen, S. F., Nilius, B., Lambert, I. H., and Hoffmann, E. K. 1999. Mechanical stress induces release of ATP from Ehrlich ascites tumor cells. Biochim. Biophys. Acta 1416: 271–284.

    Google Scholar 

  174. Zimmermann, H. 2000. Extracellular metabolism of ATP and other nucleotides. Naunyn-Schmiedebergs Arch. Pharmacol. 362:299–309.

    Google Scholar 

  175. Thannickal, V. J. and Fanburg, B. L. 2000. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279:L1005–L1028.

    Google Scholar 

  176. Finkel, T. 2001. Reactive oxygen species and signal transduction. IUBMB Life 52:3–6.

    Google Scholar 

  177. Kugiyama, K., Sugiyama, S., Ogata, N., Oka, H., Doi, H., Ota, Y., and Yasue, H. 1999. Burst production of superoxide anion in human endothelial cells by lysophosphatidylcholine. Atherosclerosis 143:201–204.

    Google Scholar 

  178. Yamakawa, T., Tanaka, S., Yamakawa, Y., Kamei, J., Numaguchi, K., Motley, E. D., Inagami, T., and Eguchi, S. 2002. Lysophosphatidylcholine activates extracellular signal-regulated kinases 1/2 through reactive oxygen species in rat vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 22: 752–758.

    Google Scholar 

  179. Chahine, R. and Feng, J. 1998. Protective effects of taurine against reperfusion-induced arrhythmias in isolated ischemic rat heart. Arzneimittelforschung 48:360–364.

    Google Scholar 

  180. Raschke, P., Massoudy, P., and Becker, B. F. 1995. Taurine protects the heart from neutrophil-induced reperfusion injury. Free Radic. Biol. Med. 19:461–471.

    Google Scholar 

  181. Demmig-Adams, B. and Adams, W. W., III. 2002. Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153.

    Google Scholar 

  182. Filomeni, G., Rotilio, G., and Ciriolo, M. R. 2002. Cell signalling and the glutathione redox system. Biochem. Pharmacol. 64:1057–1064.

    Google Scholar 

  183. Vepa, S., Scribner, W. M., Parinandi, N. L., English, D., Garcia, J. G., and Natarajan, V. 1999. Hydrogen peroxide stimulates tyrosine phosphorylation of focal adhesion kinase in vascular endothelial cells. Am. J. Physiol. 277:L150–L158.

    Google Scholar 

  184. Pedersen, S. F., Beisner, K. H., Hougaard, C., Willumsen, B. M., Lambert, I. H., and Hoffmann, E. K. 2002. Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts. J. Physiol. 541:779–796.

    Google Scholar 

  185. Lambert, I. H. 2003. Regulation of the volume-sensitive taurine efflux pathway in NIH3T3 mouse fibroblasts. In Azuma, J., Lombardini, J. B., Schaffer, S. W., and Azuma, J. Taurine in the 21st century, (in press).

  186. Deleuze, C., Duvoid, A., Moos, F. C., and Hussy, N. 2000. Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus. J. Physiol. 523:291–299.

    Google Scholar 

  187. Lambert, I. H. and Falktoft, B. 2000. Lysophosphatidylcholine induces taurine release from HeLa cells. J. Membr. Biol. 176: 175–185.

    Google Scholar 

  188. Meng, T. C., Fukada, T., and Tonks, N. K. 2002. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9:387–399.

    Google Scholar 

  189. Kamata, H. and Hirata, H. 1999. Redox regulation of cellular signalling. Cell. Signal. 11:1–14.

    Google Scholar 

  190. Lepple-Wienhues, A., Szabo, I., Laun, T., Kaba, N. K., Gulbins, E., and Lang, F. 1998. The tyrosine kinase p56lck mediates activation of swelling-induced chloride channels in lymphocytes. J. Cell Biol. 141:281–286.

    Google Scholar 

  191. Ochoa de la Paz, L. D., Lezama, R., Torres-Marquez, M. E., and Pasantes-Morales, H. 2002. Tyrosine kinases and amino acid efflux under hyposmotic and ischaemic conditions in the chicken retina. Pflugers Arch. 445:87–96.

    Google Scholar 

  192. Mongin, A. A., Reddi, J. M., Charniga, C., and Kimelberg, H. K. 1999. [3H]taurine and D-[3H]aspartate release from astrocyte cultures are differently regulated by tyrosine kinases. Am. J. Physiol. 276:C1226–C1230.

    Google Scholar 

  193. Hubert, E. M., Musch, M. W., and Goldstein, L. 2000. Inhibition of volume-stimulated taurine efflux and tyrosine kinase activity in the skate red blood cell. Pflugers Arch. 440: 132–139.

    Google Scholar 

  194. Shaul, P. W. and Anderson, R. G. 1998. Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. 275:L843–L851.

    Google Scholar 

  195. Trouet, D., Carton, I., Hermans, D., Droogmans, G., Nilius, B., and Eggermont, J. 2001. Inhibition of VRAC by c-Src tyrosine kinase targeted to caveolae is mediated by the Src homology domains. Am. J. Physiol. Cell Physiol. 281:C248–C256.

    Google Scholar 

  196. Davis, M. J., Wu, X., Nurkiewicz, T. R., Kawasaki, J., Gui, P., Hill, M. A., and Wilson, E. 2001. Regulation of ion channels by protein tyrosine phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 281:H1835–H1862.

    Google Scholar 

  197. Tilly, B. C., Edixhoven, M. J., Tertoolen, L. G., Morii, N., Saitoh, Y., Narumiya, S., and de Jonge, H. R. 1996. Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol. Biol. Cell 7:1419–1427.

    Google Scholar 

  198. Ben Mahdi, M. H., Andrieu, V., and Pasquier, C. 2000. Focal adhesion kinase regulation by oxidative stress in different cell types. IUBMB Life 50:291–299.

    Google Scholar 

  199. Salazar, E. P. and Rozengurt, E. 1999. Bombesin and platelet-derived growth factor induce association of endogenous focal adhesion kinase with Src in intact Swiss 3T3 cells. J. Biol. Chem. 274:28371–28378.

    Google Scholar 

  200. Maa, M. C. and Leu, T. H. 1998. Vanadate-dependent FAK activation is accomplished by the sustained FAK Tyr-576/577 phosphorylation. Biochem. Biophys. Res. Commun. 251:344–349.

    Google Scholar 

  201. Barchowsky, A., Munro, S. R., Morana, S. J., Vincenti, M. P., and Treadwell, M. 1995. Oxidant-sensitive and phosphorylation-dependent activation of NF-kappa B and AP-1 in endothelial cells. Am. J. Physiol. 269:L829–L836.

    Google Scholar 

  202. Widmann, C., Gibson, S., Jarpe, M. B., and Johnson, G. L. 1999. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol. Rev. 79:143–180.

    Google Scholar 

  203. Shen, M. R., Chou, C. Y., Browning, J. A., Wilkins, R. J., and Ellory, J. C. 2001. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease. J. Physiol 537:347–362.

    Google Scholar 

  204. Haimovich, B., Ji, P., Ginalis, E., Kramer, R., and Greco, R. 1999. Phospholipase A2 enzymes regulate αIIb β3-mediated, but not Fc γRII receptor-mediated, pp125FAK phosphorylation in platelets. Thromb. Haemost. 81:618–624.

    Google Scholar 

  205. Voets, T., Manolopoulos, V., Eggermont, J., Ellory, C., Droogmans, G., and Nilius, B. 1998. Regulation of a swelling-activated chloride current in bovine endothelium by protein tyrosine phosphorylation and G proteins. J. Physiol. 506:341–352.

    Google Scholar 

  206. Chikumi, H., Fukuhara, S., and Gutkind, J. S. 2002. Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: Evidence of a role for focal adhesion kinase. J. Biol. Chem. 277: 12463–12473.

    Google Scholar 

  207. Hoffmann, E. K. and Mills, J. W. 1999. Membrane events involved in volume regulation. Curr. Topics Membr. 48:123–196.

    Google Scholar 

  208. Finkel, T. 2000. Redox-dependent signal transduction. FEBS Lett. 476:52–54.

    Google Scholar 

  209. McPhail, L. C., Waite, K. A., Regier, D. S., Nixon, J. B., Qualliotine-Mann, D., Zhang, W. X., Wallin, R., and Sergeant, S. 1999. A novel protein kinase target for the lipid second messenger phosphatidic acid. Biochim. Biophys. Acta 1439:277–290.

    Google Scholar 

  210. Babior, B. M. 1998. NADPH oxidase: An update. Blood 93: 1464–1476.

    Google Scholar 

  211. Zhao, X., Bey, E. A., Wientjes, F. B., and Cathcart, M. K. 2002. Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity: cPLA2 affects translocation but not phosphorylation of p67(phox) and p47(phox). J. Biol. Chem. 277:25385–25392.

    Google Scholar 

  212. Javesghani, D., Magder, S. A., Barreiro, E., Quinn, M. T., and Hussain, S. N. 2002. Molecular characterization of a superoxide-generating NAD(P)H oxidase in the ventilatory muscles. Am. J. Respir. Crit. Care Med. 165:412–418.

    Google Scholar 

  213. Regier, D. S., Greene, D. G., Sergeant, S., Jesaitis, A. J., and McPhail, L. C. 2000. Phosphorylation of p22phox is mediated by phospholipase D-dependent and-independent mechanisms: Correlation of NADPH oxidase activity and p22phox phosphorylation. J. Biol. Chem. 275:28406–28412.

    Google Scholar 

  214. Fontayne, A., Dang, P. M., Gougerot-Pocidalo, M. A., and El Benna, J. 2002. Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: Effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 41:7743–7750.

    Google Scholar 

  215. Gopalakrishna, R. and Anderson, W. B. 1991. Reversible oxidative activation and inactivation of protein kinase C by the mitogen/tumor promoter periodate. Arch. Biochem. Biophys. 285: 382–387.

    Google Scholar 

  216. Konishi, H., Tanaka, M., Takemura, Y., Matsuzaki, H., Ono, Y., Kikkawa, U., and Nishizuka, Y. 1997. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc. Natl. Acad. Sci. USA 94:11233–11237.

    Google Scholar 

  217. Fang, X., Gaudette, D., Furui, T., Mao, M., Estrella, V., Eder, A., Pustilnik, T., Sasagawa, T., LaPushin, R., Y, S., Jaffe, R. B., Wiener, J. R., Erickson, J. R., and Mills, G. B. 2000. Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann. NY Acad. Sci. 905: 188–208.

    Google Scholar 

  218. Kabarowski, J. H., Zhu, K., Le, L. Q., Witte, O. N., and Xu, Y. 2001. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 293:702–705.

    Google Scholar 

  219. Lundbaek, J. A. and Andersen, O. S. 1994. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 104:645–673.

    Google Scholar 

  220. Chen, M., Xiao, C. Y., Hashizume, H., and Abiko, Y. 1997. Differential effects of Ca2+ channel blockers on Ca2+ overload induced by lysophosphatidylcholine in cardiomyocytes. Eur. J. Pharmacol. 333:261–268.

    Google Scholar 

  221. Takahashi, K., Ohyabu, Y., Schaffer, S. W., and Azuma, J. 2000. Taurine prevents ischemia damage in cultured neonatal rat cardiomyocytes. Adv. Exp. Med. Biol. 483:109–116.

    Google Scholar 

  222. Shaikh, N. A. and Downar, E. 1981. Time course of changes in porcine myocardial phospholipid levels during ischemia: A reassessment of the lysolipid hypothesis. Circ. Res. 49:316–325.

    Google Scholar 

  223. Yu, L., Netticadan, T., Xu, Y. J., Panagia, V., and Dhalla, N. S. 1998. Mechanisms of lysophosphatidylcholine-induced increase in intracellular calcium in rat cardiomyocytes. J. Pharmacol. Exp. Ther. 286:1–8.

    Google Scholar 

  224. Sagar, P. S. and Das, U. N. 1995. Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells in vitro. Prostaglandins Leukot. Essent. Fatty Acids 53:287–299.

    Google Scholar 

  225. Lipton, P. 1999. Ischemic cell death in brain neurons. Physiol. Rev. 79:1431–1568.

    Google Scholar 

  226. Kinnaird, A. A. A., Choy, P. C., and Man, R. Y. K. 1998. Lysophosphatidylcholine accumulation in the ischemic canine heart. Lipids 23:32–35.

    Google Scholar 

  227. Kimelberg, H. K., Goderie, S. K., Higman, S., Pang, S., and Waniewski, R. A. 1990. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci. 10: 1583–1591.

    Google Scholar 

  228. Schousboe, A., Sanchez-Olea, R., Moran, J., and Pasantes-Morales, H. 1991. Hyposmolarity-induced taurine release in cerebellar granule cells is associated with diffusion and not with high-affinity transport. J. Neurosci. Res. 30:661–665.

    Google Scholar 

  229. Sanchez-Olea, R., Pasantes-Morales, H., Lazaro, A., and Cereijido, M. 1991. Osmolarity-sensitive release of free amino acids from cultured kidney cells (MDCK). J. Membr. Biol. 121:1–9.

    Google Scholar 

  230. Hall, A. C. 1995. Volume-sensitive taurine transport in bovine articular chondrocytes. J. Physiol 484:755–766.

    Google Scholar 

  231. Strange, K., Emma, F., and Jackson, P. S. 1996. Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270:C711–C730.

    Google Scholar 

  232. Kirk, K. 1997. Swelling-activated organic osmolyte channels. J. Membr. Biol. 158:1–16.

    Google Scholar 

  233. Okada, Y. 1997. Volume expansion-sensing outward-rectifier Cl channel: Fresh start to the molecular identity and volume sensor. Am. J. Physiol. 273:C755–C789.

    Google Scholar 

  234. Ackerman, M. J., Wickman, K. D., and Clapham, D. E. 1994. Hypotonicity activates a native chloride current in Xenopus oocytes. J. Gen. Physiol. 103:153–179.

    Google Scholar 

  235. Jentsch, T. J., Stein, V., Weinreich, F., and Zdebik, A. A. 2002. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82:503–568.

    Google Scholar 

  236. Jackson, P. S. and Strange, K. 1993. Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265:C1489–C1500.

    Google Scholar 

  237. Boese, S. H., Kinne, R. K., and Wehner, F. 1996. Single-channel properties of swelling-activated anion conductance in rat inner medullary collecting duct cells. Am. J. Physiol. 271:F1224–F1233.

    Google Scholar 

  238. Banderali, U. and Roy, G. 1992. Anion channels for amino acids in MDCK cells. Am. J. Physiol. 263:C1200–C1207.

    Google Scholar 

  239. Paulmichl, M., Li, Y., Wickman, K., Ackerman, M., Peralta, E., and Clapham, D. 1992. New mammalian chloride channel identified by expression cloning. Nature 356:238–241.

    Google Scholar 

  240. Thiemann, A., Grunder, S., Pusch, M., and Jentsch, T. J. 1992. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57–60.

    Google Scholar 

  241. Duan, D., Winter, C., Cowley, S., Hume, J. R., and Horowitz, B. 1997. Molecular identification of a volume-regulated chloride channel. Nature 390:417–421.

    Google Scholar 

  242. Moorman, J. R. and Jones, L. R. 1998. Phospholemman: A cardiac taurine channel involved in regulation of cell volume. Adv. Exp. Med. Biol. 442:219–228.

    Google Scholar 

  243. Fievet, B., Gabillat, N., Borgese, F., and Motais, R. 1995. Expression of band 3 anion exchanger induces chloride current and taurine transport: Structure-function analysis. EMBO J. 14: 5158–5169.

    Google Scholar 

  244. Musch, M. W., Davis-Amaral, E. M., Vandenburgh, H. H., and Goldstein, L. 1998. Hypotonicity stimulates translocation of ICln in neonatal rat cardiac myocytes. Pflugers Arch. 436:415–422.

    Google Scholar 

  245. Nilius, B., Eggermont, J., Voets, T., Buyse, G., Manolopoulos, V., and Droogmans, G. 1997. Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68:69–119.

    Google Scholar 

  246. Buyse, G., Voets, T., Tytgat, J., De Greef, C., Droogmans, G., Nilius, B., and Eggermont, J. 1997. Expression of human pICln and ClC-6 in Xenopus oocytes induces an identical endogenous chloride conductance. J. Biol. Chem. 272:3615–3621.

    Google Scholar 

  247. Voets, T., Buyse, G., Tytgat, J., Droogmans, G., Eggermont, J., and Nilius, B. 1996. The chloride current induced by expression of the protein pICln in Xenopus oocytes differs from the endogenous volume-sensitive chloride current. J. Physiol 495:441–447.

    Google Scholar 

  248. Stegen, C., Matskevich, I., Wagner, C. A., Paulmichl, M., Lang, F., and Broer, S. 2000. Swelling-induced taurine release without chloride channel activity in Xenopus laevis oocytes expressing anion channels and transporters. Biochim. Biophys. Acta 1467: 91–100.

    Google Scholar 

  249. Nehrke, K., Arreola, J., Nguyen, H. V., Pilato, J., Richardson, L., Okunade, G., Baggs, R., Shull, G. E., and Melvin, J. E. 2002. Loss of hyperpolarization-activated Cl current in salivary acinar cells from Clcn2 knockout mice. J. Biol. Chem. 277: 23604–23611.

    Google Scholar 

  250. Xiong, H., Li, C., Garami, E., Wang, Y., Ramjeesingh, M., Galley, K., and Bear, C. E. 1999. ClC-2 activation modulates regulatory volume decrease. J. Membr. Biol. 167:215–221.

    Google Scholar 

  251. Hermoso, M., Satterwhite, C. M., Andrade, Y. N., Hidalgo, J., Wilson, S. M., Horowitz, B., and Hume, J. R. 2002. ClC-3 is a fundamental molecular component of volume-sensitive outwardly rectifying Cl channels and volume regulation in HeLa cells and Xenopus laevis oocytes. J. Biol. Chem. 277:40066–40074.

    Google Scholar 

  252. Arreola, J., Begenisich, T., Nehrke, K., Nguyen, H. V., Park, K., Richardson, L., Yang, B., Schutte, B. C., Lamb, F. S., and Melvin, J. E. 2002. Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl channel gene. J. Physiol 545:207–216.

    Google Scholar 

  253. Moran, J., Morales-Mulia, M., and Pasantes-Morales, H. 2001. Reduction of phospholemman expression decreases osmosensitive taurine efflux in astrocytes. Biochim. Biophys. Acta 1538: 313–320.

    Google Scholar 

  254. Moorman, J. R., Ackerman, S. J., Kowdley, G. C., Griffin, M. P., Mounsey, J. P., Chen, Z., Cala, S. E., O'Brian, J. J., Szabo, G., and Jones, L. R. 1995. Unitary anion currents through phospholemmal channel molecules. Nature 377:737–740.

    Google Scholar 

  255. Morales-Mulia, M., Pasantes-Morales, H., and Moran, J. 2000. Volume sensitive efflux of taurine in HEK293 cells overexpressing phospholemman. Biochim. Biophys. Acta 1496:252–260.

    Google Scholar 

  256. Chen, Z., Jones, L. R., O'Brian, J. J., Moorman, J. R., and Cala, S. E. 1998. Structural domains in phospholemman: A possible role for the carboxyl terminus in channel inactivation. Circ. Res. 82:367–374.

    Google Scholar 

  257. Martin del Rio, R. and Solis, J. M. 1998. The anion-exchanger AE1 is a diffusion pathway for taurine transport in rat erythrocytes. Adv. Exp. Med. Biol. 442:255–260.

    Google Scholar 

  258. Pedersen, S. F., Prenen, J., Droogmans, G., Hoffmann, E. K., and Nilius, B. 1998. Separate swelling-and Ca2+-activated anion currents in Ehrlich ascites tumor cells. J. Membr. Biol. 163: 97–110.

    Google Scholar 

  259. Lambert, I. H. and Hoffmann, E. K. 1994. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells. J. Membr. Biol. 142:289–298.

    Google Scholar 

  260. Diaz, M., Valverde, M. A., Higgins, C. F., Rucareanu, C., and Sepulveda, F. V. 1993. Volume-activated chloride channels in HeLa cells are blocked by verapamil and dideoxyforskolin. Pflugers Arch. 422:347–353.

    Google Scholar 

  261. Shennan, D. B. and Thomson, J. 2000. Further evidence for the existence of a volume-activated taurine efflux pathway in rat mammary tissue independent from volume-sensitive Cl channels. Acta Physiol. Scand. 168:295–299.

    Google Scholar 

  262. Roman, R. M., Wang, Y., and Fitz, J. G. 1996. Regulation of cell volume in a human biliary cell line: Activation of K+ and Cl currents. Am. J. Physiol. 271:G239–G248.

    Google Scholar 

  263. Pasantes-Morales, H., Quesada, O., and Moran, J. 1998. Taurine: An osmolyte in mammalian tissues. Adv. Exp. Med. Biol. 442:209–217.

    Google Scholar 

  264. Lepple-Wienhues, A., Szabo, I., Wieland, U., Heil, L., Gulbins, E., and Lang, F. 2000. Tyrosine kinases open lymphocyte chloride channels. Cell Physiol. Biochem. 10:307–312.

    Google Scholar 

  265. Stutzin, A., Torres, R., Oporto, M., Pacheco, P., Eguiguren, A. L., Cid, L. P., and Sepulveda, F. V. 1999. Separate taurine and chloride efflux pathways activated during regulatory volume decrease. Am. J. Physiol. 277:C392–C402.

    Google Scholar 

  266. Pasantes-Morales, H., Moran, J., and Schousboe, A. 1990. Volume-sensitive release of taurine from cultured astrocytes: Properties and mechanism. Glia 3:427–432.

    Google Scholar 

  267. Voets, T., Droogmans, G., and Nilius, B. 1997. Modulation of voltage-dependent properties of a swelling-activated Cl current. J. Gen. Physiol. 110:313–325.

    Google Scholar 

  268. Nilius, B., Prenen, J., and Droogmans, G. 1998. Modulation of volume-regulated anion channels by extra-and intracellular pH. Pflugers Arch. 436:742–748.

    Google Scholar 

  269. Livne, A. and Hoffmann, E. K. 1990. Cytoplasmic acidification and activation of Na+/H+ exchange during regulatory volume decrease in Ehrlich ascites tumor cells. J. Membr. Biol. 114: 153–157.

    Google Scholar 

  270. Guizouarn, H., Motais, R., Garcia-Romeu, F., and Borgese, F. 2000. Cell volume regulation: The role of taurine loss in maintaining membrane potential and cell pH. J. Physiol. 523:147–154.

    Google Scholar 

  271. Andrew, R. D., Lobinowich, M. E., and Osehobo, E. P. 1997. Evidence against volume regulation by cortical brain cells during acute osmotic stress. Exp. Neurol. 143:300–312.

    Google Scholar 

  272. Minton, A. P. 1994. Influence of macromolecular crowding in intracellular associations: A possible role in volume regulation. Pages 181–190, in Strange, K. (ed.), Cellular and molecular physiology of cell volume regulation.Boca Raton, Fla: CRC Press.

    Google Scholar 

  273. Burg, M. B. 2000. Macromolecular crowding as a cell volume sensor. Cell Physiol. Biochem. 10:251–256.

    Google Scholar 

  274. Jackson, P. S., Churchwell, K., Ballatori, N., Boyer, J. L., and Strange, K. 1996. Swelling-activated anion conductance in skate hepatocytes: Regulation by cell Cl and ATP. Am. J. Physiol. 270:C57–C66.

    Google Scholar 

  275. Wittels, K. A., Hubert, E. M., Musch, M. W., and Goldstein, L. 2000. Osmolyte channel regulation by ionic strength in skate RBC. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279: R69–R76.

    Google Scholar 

  276. Guizouarn, H. and Motais, R. 1999. Swelling activation of transport pathways in erythrocytes: Effects of Cl3, ionic strength, and volume changes. Am. J. Physiol. 276:C210–C220.

    Google Scholar 

  277. Voets, T., Droogmans, G., Raskin, G., Eggermont, J., and Nilius, B. 1999. Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc. Natl. Acad. Sci. USA 96:5298–5303.

    Google Scholar 

  278. Hoffmann, E. K. 2000. Intracellular signalling involved in volume regulatory decrease. Cell Physiol. Biochem. 10:273–288.

    Google Scholar 

  279. Hoffmann, E. K. and Pedersen, S. F. 1998. Sensors and signal transduction in the activation of cell volume regulatory ion transport systems. Contrib. Nephrol. 123:50–78.

    Google Scholar 

  280. Treharne, K. J., Marshall, L. J., and Mehta, A. 1994. A novel chloride-dependent GTP-utilizing protein kinase in plasma membranes from human respiratory epithelium. Am. J. Physiol. 267: L592–L601.

    Google Scholar 

  281. Cornet, M., Ubl, J., and Kolb, H. A. 1993. Cytoskeleton and ion movements during volume regulation in cultured PC12 cells. J. Membr. Biol. 133:161–170.

    Google Scholar 

  282. Tilly, B. C., Edixhoven, M. J., Tertoolen, L. G., Morii, N., Saitoh, Y., Narumiya, S., and de Jonge, H. R. 1996. Activation of the osmo-sensitive chloride conductance involves P21ρ and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol. Biol. Cell 7:1419–1427.

    Google Scholar 

  283. Oike, M., Schwarz, G., Sehrer, J., Jost, M., Gerke, V., Weber, K., Droogmans, G., and Nilius, B. 1994. Cytoskeletal modulation of the response to mechanical stimulation in human vascular endothelial cells. Pflugers Arch. 428:569–576.

    Google Scholar 

  284. Ding, M., Eliasson, C., Betsholtz, C., Hamberger, A., and Pekny, M. 1998. Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Brain Res. Mol. Brain Res. 62:77–81.

    Google Scholar 

  285. Hall, A. 1998. Rho GTPases and the actin cytoskeleton. Science 279:509–514.

    Google Scholar 

  286. Ridley, A. J. and Hall, A. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399.

    Google Scholar 

  287. Massoumi, R., Larsson, C., and Sjolander, A. 2002. Leukotriene D4 induces stress-fibre formation in intestinal epithelial cells via activation of RhoA and PKCdelta. J. Cell Sci. 115:3509–3515.

    Google Scholar 

  288. Saegusa, S., Tsubone, H., and Kuwahara, M. 2001. Leukotriene D(4)-induced Rho-mediated actin reorganization in human bronchial smooth muscle cells. Eur. J. Pharmacol. 413:163–171.

    Google Scholar 

  289. Giancotti, F. G. 2003. A structural view of integrin activation and signaling. Dev. Cell 4:149–151.

    Google Scholar 

  290. Schwartz, M.A. and Shattil, S. J. 2000. Signaling networks linking integrins and rho family GTPases. Trends Biochem. Sci. 25: 388–391.

    Google Scholar 

  291. Nilius, B., Voets, T., Prenen, J., Barth, H., Aktories, K., Kaibuchi, K., Droogmans, G., and Eggermont, J. 1999. Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. J. Physiol. 516:67–74.

    Google Scholar 

  292. Michaely, P. A., Mineo, C., Ying, Y. S., and Anderson, R. G. 1999. Polarized distribution of endogenous Rac1 and RhoA at the cell surface. J. Biol. Chem. 274:21430–21436.

    Google Scholar 

  293. Okada, Y. 1999. A scaffolding for regulation of volume-sensitive Cl channels. J. Physiol. 520:2.

    Google Scholar 

  294. Nilius, B., Prenen, J., Walsh, M. P., Carton, I., Bollen, M., Droogmans, G., and Eggermont, J. 2000. Myosin light chain phosphorylation-dependent modulation of volume-regulated anion channels in macrovascular endothelium. FEBS Lett. 466:346–350.

    Google Scholar 

  295. Miyamoto, S., Teramoto, H., Coso, O. A., Gutkind, J. S., Burbelo, P. D., Akiyama, S. K., and Yamada, K. M. 1995. Integrin function: Molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol. 131:791–805.

    Google Scholar 

  296. Fielding, C. J. 2001. Caveolae and signaling. Curr. Opin. Lipidol. 12:281–287.

    Google Scholar 

  297. Trouet, D., Nilius, B., Jacobs, A., Remacle, C., Droogmans, G., and Eggermont, J. 1999. Caveolin-1 modulates the activity of the volume-regulated chloride channel. J. Physiol. 520:113–119.

    Google Scholar 

  298. Margalit, A. and Livne, A. A. 1992. Human platelets exposed to mechanical stresses express a potent lipoxygenase product. Thromb. Haemost. 68:589–594.

    Google Scholar 

  299. Kinnunen, P. K. 2000. Lipid bilayers as osmotic response elements. Cell Physiol. Biochem. 10:243–250.

    Google Scholar 

  300. Ingber, D. E. 1997. Tensegrity: The architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59:575–599.

    Google Scholar 

  301. Montell, C., Birnbaumer, L., and Flockerzi, V. 2002. The TRP channels, a remarkably functional family. Cell 108:595–598.

    Google Scholar 

  302. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G., and Plant, T. D. 2000. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biol. 2:695–702.

    Google Scholar 

  303. Wissenbach, U., Bodding, M., Freichel, M., and Flockerzi, V. 2000. Trp12, a novel Trp related protein from kidney. FEBS Lett. 485:127–134.

    Google Scholar 

  304. Nilius, B., Prenen, J., Wissenbach, U., Bodding, M., and Droogmans, G. 2001. Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch. 443:227–233.

    Google Scholar 

  305. Olson, J. E. and Li, G. Z. 1997. Increased potassium, chloride, and taurine conductances in astrocytes during hypoosmotic swelling. Glia 20:254–261.

    Google Scholar 

  306. Han, B., Luo, G., Shi, Z. Z., Barrios, R., Atwood, D., Liu, W., Habib, G. M., Sifers, R. N., Corry, D. B., and Lieberman, M. W. 2002. Gamma-glutamyl leukotrienase, a novel endothelial membrane protein, is specifically responsible for leukotriene D4 formation in vivo. Am. J. Pathol. 161:481–490.

    Google Scholar 

  307. Hoffmann, E. K. and Hougaard, C. 2001. Intracellular signalling involved in activation of the volume-sensitive K+ current in Ehrlich ascites tumour cells. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 130:355–366.

    Google Scholar 

  308. Massoumi, R. and Sjolander, A. 2001. Leukotriene D4 affects localisation of vinculin in intestinal epithelial cells via distinct tyrosine kinase and protein kinase C controlled events. J. Cell Sci. 114:1925–1934.

    Google Scholar 

  309. Vegesna, R. V., Mong, S., and Crooke, S. T. 1988. Leukotriene D4-induced activation of protein kinase C in rat basophilic leukemia cells. Eur. J. Pharmacol. 147:387–396.

    Google Scholar 

  310. Winkler, J. D., Mong, S., and Crooke, S. T. 1988. Leukotriene D4-induced homologous desensitization of calcium mobilization in rat basophilic leukemia cells. J. Pharmacol. Exp. Ther. 244: 449–455.

    Google Scholar 

  311. Lombardini, J. B. 1998. Increased phosphorylation of specific rat cardiac and retinal proteins in taurine-depleted animals: Isolation and identification of the phosphoproteins. Adv. Exp. Med. Biol. 442:441–447.

    Google Scholar 

  312. Rabin, B., Nicolosi, R. J., and Hayes, K. C. 1976. Dietary influence on bile acid conjugation in the cat. J. Nutr. 106:1241–1246.

    Google Scholar 

  313. Hofmann, A. F. and Roda, A. 1984. Physicochemical properties of bile acids and their relationship to biological properties: An overview of the problem. J. Lipid Res. 25:1477–1489.

    Google Scholar 

  314. Huxtable, R. J. 2000. Expanding the circle 1975-1999: Sulfur biochemistry and insights on the biological functions of taurine. Adv. Exp. Med. Biol. 483:1–25.

    Google Scholar 

  315. Schaffer, S., Takahashi, K., and Azuma, J. 2000. Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546.

    Google Scholar 

  316. Remy, A., Henry, S., and Tappaz, M. 1990. Specific antiserum and monoclonal antibodies against the taurine biosynthesis enzyme cysteine sulfinate decarboxylase: Identity of brain and liver enzyme. J. Neurochem. 54:870–879.

    Google Scholar 

  317. De Luca, A., Pierno, S., and Camerino, D. C. 1996. Effect of taurine depletion on excitation-contraction coupling and Cl conductance of rat skeletal muscle. Eur. J. Pharmacol. 296:215–222.

    Google Scholar 

  318. Lambert, I. H. and Hoffmann, E. K. 1991. The role of phospholipase-A2 and 5-lipoxygenase in the activation of K and Cl channels and the taurine leak pathway in Ehrlich ascites tumor cells. Acta Physiol. Scand. 143:33A.

    Google Scholar 

  319. Finkel, T. 2001. Reactive oxygen species and signal transduction. IUBMB Life 52:3–6.

    Google Scholar 

  320. Hensley, K., Robinson, K. A., Gabbita, S. P., Salsman, S., and Floyd, R. A. 2000. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 28:1456–1462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, I.H. Regulation of the Cellular Content of the Organic Osmolyte Taurine in Mammalian Cells. Neurochem Res 29, 27–63 (2004). https://doi.org/10.1023/B:NERE.0000010433.08577.96

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000010433.08577.96

Navigation