Skip to main content
Log in

The dependency of simultaneously recorded retinal and cortical potentials on temporal frequency

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

To optimize the simultaneous recording of retinal and cortical potentials, we tried to identify the most sensitive condition for pattern-electroretinogram (PERG) and pattern visual evoked potential (VEP) concerning the temporal frequency. In the same session PERGs and VEPs were elicited by checkerboard patterns with 5 temporal frequencies ranging from 8 rps to 33 rps. For data analysis the steady-state responses were Fourier analysed. We evaluated whether a statistically significant response was present, estimated the magnitude of the response at the stimulus frequencies tested and estimated it's significance. For PERG less dependence on temporal frequency was evident compared to VEP. The magnitude of the VEP response was larger than that of the PERG. However the rate of statistically significant responses for the PERG compared to that of the VEP was similar for the small checksize and even higher for the large checksize. The results permit a simultaneous recording in the range of temporal frequencies, where high responses are acquired from both levels, retinal and cortical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi-Usami E, Hosoda L, Toyonaga N. Effects of aging on the temporal frequency characteristics determined by pattern visually evoked cortical potentials. Doc Ophthalmol 1988; 69(2): 139–44.

    Google Scholar 

  2. Bach M, Hawlina M, Holder GE., Marmor MF, Meigen T, Vaegan Miyake Y. Standard for pattern electroretinography. International society for clinical electrophysiology of vision. Doc Ophthalmol 2000; 101(1): 11–8.

    Google Scholar 

  3. Bach M, Meigen T, Strasburger H. Raster-scan cathode-ray tubes for vision research-limits of resolution in space, time and intensity, and some solutions. Spat Vis 1997; 10(4): 403–14.

    Google Scholar 

  4. Bach M, Waltenspiel S, Bühler B, Röver J. Sehbahndiagnos-tik mit simultanter Registrierung der retinalen und kortikalen Musterpotentiale. Fortschr Ophthalmol 1985; 82(4): 398–401.

    Google Scholar 

  5. Burkitt GR, Silberstein RB, Cadusch PJ, Wood AW. Steady-state visual evoked potentials and travelling waves '. Clin Neu-rophysiol 2000; 111(2): 246–58.

    Google Scholar 

  6. Celesia GG, Kaufman D, Cone S. Effects of age and sex on pattern electroretinograms and visual evoked potentials. Electroencephalogr Clin Neurophysiol 1987; 68(3): 161–71.

    Google Scholar 

  7. Fagan JE, Downard J, FG, Yolton RL. Steady-state visual evoked response amplitudes and concurrent electroencephalographic activity. Am J Optom Physiol Opt 1985; 62(6): 418–22.

    Google Scholar 

  8. Fiorentini A, Trimarchi C. Development of temporal properties of pattern electroretinogram and visual evoked potentials in infants. Vision Res 1992; 32(9): 1609–21.

    Google Scholar 

  9. Groneberg A, Teping C. Topodiagnostik von Sehstörungen durch Ableitung retinaler und kortikaler Antworten auf Umkehr-Kontrastmuster. Ber Dtsch Ophthalmol Ges 1980; 77: 409–17.

    Google Scholar 

  10. Hajek A, Zrenner E, Verbesserte objektive Visusprüfung mit visuell evozierten corticalen Potentialen durch schnelle Reizmustersequenzen unterschiedlicher Raumfrequenz. Fortschr Ophthalmol 1988; 85: 550–4.

    Google Scholar 

  11. Harding GF, Odom JV, Spileers W, Spekreijse H. Standard for visual evoked potentials 1995. The International Society for Clinical Electrophysiology of Vision. Vision Res 1996; 36(21): 3567–72.

    Google Scholar 

  12. Heine S, Rüther K, Isensee J, Zrenner E. Clinical significance of objective vision assessment using visually evoked cortical potentials induced by rapid pattern sequences of different spatial frequency. Klin Monatsbl Augenheilkd 1999; 215(3): 175–81.

    Google Scholar 

  13. Holder GE. The pattern electroretinogram in anterior visual pathway dysfunction and its relationship to the pattern visual evoked potential: a personal clinical review of 743eyes. Eye 11(Pt 6): 924–34.

  14. Holder GE. Pattern electroretinography (PERG)and an inte-grated approach to visual pathway diagnosis. Prog Retin Eye Res 2001; 20(4): 531–61.

    Google Scholar 

  15. Justino L, Kergoat H, Kergoat MJ. Changes in the retinocortical evoked potentials in subjects 75 years of age and older '. Clin Neurophysiol 2001; 112(7): 1343–8.

    Google Scholar 

  16. Kaufman D, Celesia GG. Simultaneous recording of pat-tern electroretinogram and visual evoked responses in neuro-ophthalmologic disorders. Neurology 1985; 35(5): 644–51.

    Google Scholar 

  17. Maffei L, Fiorentini A. Generator sources of the pattern ERG in man and animals. Evoked Potentials. Frontiers of Clinical Neuroscience 1986; 3: 101–16.

    Google Scholar 

  18. Mast J, Victor JD. Fluctuations of steady-state VEPs: inter-action of driven evoked potentials and the EEG. Electroencephalogr Clin Neurophysiol 1991; 78(5): 389–401.

    Google Scholar 

  19. Matsui Y, Saito I, Okinami S, Oono S. Influence of simultaneous pattern-reversal electroretinogram recording on visual evoked potentials. Doc Ophthalmol 1994; 86(3): 285–94.

    Google Scholar 

  20. Meigen T, Bach M. On the statistical significance of electro-physiological steady-state responses. Doc Ophthalmol 1999; 98(3): 207–32.

    Google Scholar 

  21. Moskowitz A, Sokol S. Spatial and temporal interaction of pattern-evoked cortical potentials in human infants. Vision Res 1980; 20(8): 699–707.

    Google Scholar 

  22. Nakamura A, Akio T, Matsuda E, Wakami Y. Pattern visual evoked potentials in malingering. J Neuroophthalmol 2001; 21(1): 42–5.

    Google Scholar 

  23. Norcia AM, Tyler CW. Infant VEP acuity measurements: anal-ysis of individual differences and measurement error. Electroencephalogr Clin Neurophysicol 1985a; 61(5): 359–69.

    Google Scholar 

  24. Norcia AM, Tyler CW. Spatial frequency sweep VEP: visual acuity during the first year of life. Vision Res 1985b; 25(10): 1399–1408.

    Google Scholar 

  25. Parry NR, Murray IJ, Hadjizenonos C. Spatio-temporal tuning of VEPs:effect of mode of stimulation. Vision Res 1999; 39(21): 3491–7.

    Google Scholar 

  26. Petersen J. Objective determination of viusal acuity by visual evoked potentials. Dev Ophthal 1984; 9: 108–14.

    Google Scholar 

  27. Pigeau RA, Frame AM. Steady-state visual evoked responses in high and low alpha subjects. Electroencephalogr Clin Neurophysiol 1992; 84(2): 101–9.

    Google Scholar 

  28. Porciatti V, Burr DC, Morrone MC, Fiorentini A. The effects of aging on the pattern electroretinogram and visual evoked potential in humans. Vision Res 1992; 32(7): 1199–209.

    Google Scholar 

  29. Regan D. Steady-state evoked potentials. J Opt Soc Am 1977; 67(11): 1475–89.

    Google Scholar 

  30. Regan D. Assessment of visual acuity by evoked potential recording:ambiguity caused by temporal dependence of spatial frequency selectivity. Vision Res 1978; 18(4): 439–43.

    Google Scholar 

  31. Rimmer S, Iragui V, Klauber MR, Katz B. Retinocortical time exhibits spatial selectivity. Invest Ophthalmol Vis Sci 1989; 30(9): 2045–9.

    Google Scholar 

  32. Sokol S, Jones K, Nadler D. Comparison of the spatial response properties of the human retina and cortex as measured by simultaneously recorded pattern ERGs and VEPs. Vision Res 1983; 23(7): 723–7.

    Google Scholar 

  33. Teping C. Determination of visual acuity by the visually evoked cortical potential. Klin Monatsbl Augenheilkd 1981; 179(3): 169–72.

    Google Scholar 

  34. Tyler CW, Apkarian P, Levi DM, Nakayama K. Rapid assess-ment of visual function: an electronic sweep technique for the pattern visual evoked potential. Invest Ophthalmol Vis Sci 1979; 18(7): 703–13.

    Google Scholar 

  35. Tyler CW, Nakayama K, Apkarian PA, Levi D.M. VEP assessment of visual function. Vision Res 1981; 21(4): 607–9.

    Google Scholar 

  36. Zapf HR, Bach M. The contrast characteristic of the pat-tern electroretinogram depends on temporal frequency. Graefes Arch Clin Exp Ophthalmol 1999; 237(2);93–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heine, M., Meigen, T. The dependency of simultaneously recorded retinal and cortical potentials on temporal frequency. Doc Ophthalmol 108, 1–8 (2004). https://doi.org/10.1023/B:DOOP.0000018367.29985.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:DOOP.0000018367.29985.98

Navigation