Skip to main content
Log in

Actin and the smooth muscle regulatory proteins: a structural perspective

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The structural details of the smooth muscle acto-myosin interaction and its functional implications have been much discussed in recent years, however other, smooth muscle specific, actin-binding proteins have received much less attention. With increasing technical advances in structural biology a great deal of structural information is now coming to light, information that can provide useful insight into the mechanism of action for many important non-motor actin-binding proteins. The purpose of the review is to distil the current knowledge on the structure, and interaction sites on F-actin, of the major, non-motor actin-binding proteins from smooth muscle, proposed to have a role in regulation. In the light of the recent structural studies the probable roles of the various actin-binding proteins will be discussed with particular reference to structure–function relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banuelos S, Saraste M and Carugo KD (1998) Structural comparisons of calponin homology domains: implications for actin binding. Structure 6: 1419–1431.

    PubMed  Google Scholar 

  • Bartegi A, Fattoum A and Kassab R (1990) Cross-linking of smooth muscle caldesmon to the NH2-terminal region of skeletal F-actin. J Biol Chem 265: 2231–2237.

    PubMed  Google Scholar 

  • Bartegi A, Roustan C, Bertrand R, Kassab R and Fattoum A (1998) Interaction of caldesmon with actin subdomain-2. Eur J Biochem 254: 571–579.

    PubMed  Google Scholar 

  • Bonet-Kerrache A and Mornet D (1995) Importance of the C-terminal part of actin in interactions with calponin. Biochem Biophys Res Commun 206: 127–132.

    PubMed  Google Scholar 

  • Bremer A and Aebi U (1992) The structure of the F-actin filament and the actin molecule. [Review] [44 refs]. Curr Opin Cell Biol 4: 20–26.

    PubMed  Google Scholar 

  • Bremer A, Millonig RC, Sutterlin R, Engel A, Pollard TD and Aebi U (1991) The structural basis for the intrinsic disorder of the actin filament: the “lateral slipping” model. J Cell Biol 115: 689–703.

    PubMed  Google Scholar 

  • Brenner B, Yu LC and Chalovich JM (1991) Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon: implications for the pathway to force generation. Proc Natl Acad Sci USA 88: 5739–5743.

    PubMed  Google Scholar 

  • Brenner B (1988) Effect of Ca2+ on crossbridge turnover kinetics in skinned single rabbit psoas fibres: implication for regulation of muscle contraction. Proc Natl Acad Sci USA 85: 3265–3269.

    PubMed  Google Scholar 

  • Censullo R and Cheung HC (1993) A rotational offset model for two-stranded F-actin. J Struct Biol 110: 75–83.

    PubMed  Google Scholar 

  • Chalovich JM, Cornelius P and Benson CE (1987) Caldesmon inhibits skeletal actomyosin subfragment-1 ATPase activity and the binding of myosin subfragment-1 to actin. J Biol Chem 262: 5711–5716.

    PubMed  Google Scholar 

  • Chen X, Cook RK and Rubenstein PA (1993) Yeast actin with a mutation in the “hydrophobic plug” between subdomains 3 and 4 (L266D) displays a cold-sensitive polymerization defect. J Cell Biol 123: 1185–1195.

    PubMed  Google Scholar 

  • Childs TJ, Watson MH, Novy RE, Lin JJ and Mak AS (1992) Calponin and tropomyosin interactions. Biochim Biophys Acta 1121: 41–46.

    PubMed  Google Scholar 

  • Cho YJ and Hitchcock-DeGregori SE (1991) Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc Natl Acad Sci USA 88(22): 10153–10157.

    PubMed  Google Scholar 

  • Colote S, Widada JS, Ferraz C, Bonhomme F, Marti J and Liautard JP (1988) Evolution of tropomyosin functional domains: differential splicing and genomic constraints. J Mol Evol 27: 228–235.

    PubMed  Google Scholar 

  • Cook RK, Blake WT and Rubenstein PA (1992) Removal of the amino-terminal acidic residues of yeast actin. Studies in vitro and in vivo [published erratum appears in J Biol Chem 1992 Jul 5; 267(19): 13780]. J Biol Chem 267: 9430–9436.

    PubMed  Google Scholar 

  • Crosbie R, Adams S, Chalovich JM and Reisler E (1991) The interaction of caldesmon with the COOH terminus of actin. J Biol Chem 266: 20001–20006.

    PubMed  Google Scholar 

  • Crosbie RH, Miller C, Cheung P, Goodnight T, Muhlrad A and Reisler E (1994) Structural connectivity in actin: effect of C-terminal modifications on the properties of actin. Biophys J 67: 1957–1964.

    PubMed  Google Scholar 

  • Cummins P and Perry SV (1974) Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscle. Biochem J 141: 43–49.

    PubMed  Google Scholar 

  • dos Remedios CG and Moens PD (1995) Actin and the actomyosin interface: a review. Biochim Biophys Acta 1228: 99–124.

    PubMed  Google Scholar 

  • Egelman EH and DeRosier DJ (1992) Image analysis shows that variations in actin crossover spacings are random, not compensatory. Biophys J 63: 1299–1305.

    PubMed  Google Scholar 

  • Egelman EH and Orlova A (1995) New insights into actin filament dynamics. Curr Opin Struct Biol 5: 172–180.

    PubMed  Google Scholar 

  • El-Mezgueldi M (1996) Calponin. Int J Biochem Cell Biol 28: 1185–1189.

    PubMed  Google Scholar 

  • El-Mezgueldi M, Copeland O, Fraser ID, Marston SB and Huber PA (1998) Characterization of the functional properties of smooth muscle caldesmon domain 4a: evidence for an independent inhibitory actin-tropomyosin binding domain. Biochem J 332: 395–401.

    PubMed  Google Scholar 

  • El-Mezgueldi M and Marston SB (1996) The effects of smooth muscle calponin on the strong and weak myosin binding sites of F-actin. J Biol Chem 271: 28161–28167.

    PubMed  Google Scholar 

  • Gao Y, Patchell VB, Huber PAJ, Copeland O, El-Mezgueldi M, Fattoum A, Calas B, Thorsted PB, Marston SB and Levine BA (1999) The interface between Caldesmon domain 4b and subdomain 1 of Actin studied by nuclear magnetic resonance spectroscopy. Biochem (in press).

  • Gimona M and Mital R (1998) The single CH domain of calponin is neither sufficient nor necessary for F-actin binding. J Cell Sci 111: 1813–1821.

    PubMed  Google Scholar 

  • Gimona M and Small JV (1996) Calponin. In: Barany M (ed.) Biochemistry of smooth muscle contraction. (pp. 91–103) Academic Press.

  • Graceffa P (1989) In-register homodimers of smooth muscle tropomyosin. Biochem 28: 1282–1287.

    Google Scholar 

  • Graceffa P and Jancso A (1993) Secondary structure and thermal stability of caldesmon and its domains. Archiv Biochem Biophys 307: 21–28.

    Google Scholar 

  • Hammell RL and Hitchcock-DeGregori SE (1997) The sequence of the alternatively spliced sixth exon of (-tropomyosin is critical for cooperative actin binding but not for interaction with troponin. J Biol Chem 272: 22409–22416.

    PubMed  Google Scholar 

  • Hanein D, Matsudaira P and DeRosier DJ (1997) Evidence for a conformational change in actin induced by fimbrin (N375) binding. J Cell Biol 139: 387–396.

    PubMed  Google Scholar 

  • Hanein D, Volkmann N, Goldsmith S, Michon AM, Lehman W, Craig R, DeRosier D, Almo S and Matsudaira P (1998) An atomic model of fimbrin binding to F-actin and its implications for filament cross linking and regulation. Nature Struct Biol 5: 787–792.

    PubMed  Google Scholar 

  • Hayashi K, Kanda K, Kimizuka F, Kato I and Sobue K (1989) Primary structure and functional expression of h-caldesmon complementary DNA. Biochem Biophys Res Commun 164: 503–511.

    PubMed  Google Scholar 

  • Herman IM (1993) Actin isoforms. Curr Opin Cell Biol 5: 48–55.

    PubMed  Google Scholar 

  • Hitchcock-DeGregori SE and Varnell TA (1990) Tropomyosin has discrete actin-binding sites with sevenfold and fourteen fold periodicities. J Mol Biol 214: 885–896.

    PubMed  Google Scholar 

  • Hnath EJ, Wang C-LA, Huber PJ, Marston SB, Phillips GN and JR (1996) Affinity and structure of complexes of tropomyosin and caldesmon domains. Biophys J 71: 1920–1933.

    PubMed  Google Scholar 

  • Hodgkinson JL, El-Mezgueldi M, Craig R, Vibert P, Marston SB and Lehman W (1997a) 3-D image reconstruction of reconstituted smooth muscle thin filaments containing calponin: visualization of interactions between F-actin and calponin. J Mol Biol 273: 150–159.

    PubMed  Google Scholar 

  • Hodgkinson JL, Marston SB, Craig R, Vibert P and Lehman W (1997b) Three-dimensional image reconstruction of reconstituted smooth muscle thin filaments: effects of caldesmon. Biophys J 72: 2398–2404.

    PubMed  Google Scholar 

  • Holmes KC (1995) The actomyosin interaction and its control by tropomyosin. Biophys J 68: 2S-5S.

    PubMed  Google Scholar 

  • Holmes KC, Popp D, Gebhard W and Kabsch W (1990) Atomic model of the actin filament [see comments]. Nature 347: 44–49.

    PubMed  Google Scholar 

  • Horiuchi KY, Wang Z and Chacko S (1995) Inhibition of smooth muscle actomyosin ATPase by caldesmon is associated with caldesmon-induced conformational changes in tropomyosin bound to actin. Biochem 34: 16815–16820.

    Google Scholar 

  • Horowitz A, Clement CO, Walsh MP, Tao T, Katsuyama H and Morgan KG (1996) Effects of calponin on force generation by single smooth muscle cells. Am. J Physiol 270: H1858-H1863.

    PubMed  Google Scholar 

  • Huber PA (1997) Caldesmon. Int J Biochem Cell Biol 29: 1047–1051.

    PubMed  Google Scholar 

  • Huber PA, Gao Y, Fraser ID, Copeland O, El-Mezgueldi M, Slatter DA, Keane NE, Marston SB and Levine BA (1998) Structure-activity studies of the regulatory interaction of the 10 kilodalton C-terminal fragment of Caldesmon with actin and the effect of mutation of Caldesmon residues 691–696. Biochem 37: 2314–2326.

    Google Scholar 

  • Itoh T, Suzuki S, Suzuki A, Nakamura F, Naka M and Tanaka T (1994) Effects of exogenously applied calponin on Ca2+-regulated force in skinned smooth muscle of the rabbit mesenteric artery. Pflugers Arch 427: 301–308.

    PubMed  Google Scholar 

  • Jiang Z, Grange RW, Walsh MP and Kamm KE (1997) Adenovirus-mediated transfer of the smooth muscle cell calponin gene inhibits proliferation of smooth muscle cells and fibroblasts. FEBS Lett 413: 441–445.

    PubMed  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF and Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347: 37–44.

    PubMed  Google Scholar 

  • Khaitlina S and Hinssen H (1997) Conformational changes in actin induced by its interaction with gelsolin. Biophys J 73: 929–937.

    PubMed  Google Scholar 

  • Kim E and Reisler E (1996) Intermolecular coupling between loop 38–52 and the C-terminus in actin filaments. Biophys J 71: 1914–1919.

    PubMed  Google Scholar 

  • Kolakowski J, Karkucinska A and Dabrowska R (1997) Calponin inhibits actin-activated MgATPase of myosin subfragment 1 (S1) without displacing S1 from its binding site on actin. Eur J Biochem 243: 624–629.

    PubMed  Google Scholar 

  • Kraulis PJ (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946–950.

    Google Scholar 

  • Kuznetsova I, Antropova O, Turoverov K and Khaitlina S (1996) Conformational changes in subdomain I of actin induced by proteolytic cleavage within the DNase I-binding loop: energy transfer from tryptophan to AEDANS. FEBS Lett 383: 105–108.

    PubMed  Google Scholar 

  • Lau SY, Sanders C and Smillie LB (1985) Amino acid sequence of chicken gizzard gamma-tropomyosin. J Biol Chem 260: 7257–7263.

    PubMed  Google Scholar 

  • Lees-Miller JP and Helfman DM (1991) The molecular basis for tropomyosin isoform diversity. [Review] [53 refs]. BioEssays 13: 429–437.

    PubMed  Google Scholar 

  • Lehman W (1991) Calponin and the composition of smooth muscle thin filaments. J Musc Res Cell Motil 12: 221–224.

    Google Scholar 

  • Lehman W, Craig R and Vibert P (1994) Calcium-induced tropomyosin movement in Limulus thin filaments revealed by three dimensional reconstruction. Nature 368: 65–67.

    PubMed  Google Scholar 

  • Lehman W, Vibert P and Craig R (1997) Visualization of caldesmon on smooth muscle thin filaments. J Mol Biol 274: 310–317.

    PubMed  Google Scholar 

  • Lehman W, Vibert P, Uman P and Craig R (1995) Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin filaments. J Mol Biol 251: 191–196.

    PubMed  Google Scholar 

  • Lehrer SS, Golitsina NL and Geeves MA (1997) Actin-tropomyosin activation of myosin subfragment 1 ATPase and thin filament cooperativity. The role of tropomyosin flexibility and end-to-end interactions. Biochem 36: 13449–13454.

    Google Scholar 

  • Lorenz M, Poole KJ, Popp D, Rosenbaum G and Holmes KC (1995) An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels [published erratum appears in J Mol Biol 1995; 249:509]. J Mol Biol 246: 108–119.

    PubMed  Google Scholar 

  • Lorenz M, Popp D and Holmes KC (1993) Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol 234: 826–836.

    PubMed  Google Scholar 

  • Lu FW, Freedman MV and Chalovich JM (1995) Characterization of calponin binding to actin. Biochem 34: 11864–11871.

    Google Scholar 

  • Mabuchi K, Li B, Ip W and Tao T (1997) Association of calponin with desmin intermediate filaments. J Biol Chem 272: 22662–22666.

    PubMed  Google Scholar 

  • Mabuchi K, Li Y, Tao T and Wang CL (1996) Immunocytochemical localization of caldesmon and calponin in chicken gizzard smooth muscle. J Muscle Res Cell Motil 17: 243–260.

    PubMed  Google Scholar 

  • Mabuchi K and Wang CL (1991) Electron microscopic studies of chicken gizzard caldesmon and its complex with calmodulin. J Muscle Res Cell Motil 12: 145–151.

    PubMed  Google Scholar 

  • Makuch R, Birukov K, Shirinsky V and Dabrowska R (1991) Functional interrelationship between calponin and caldesmon. Biochem J 280: 33–38.

    PubMed  Google Scholar 

  • Malmqvist U, Trybus KM, Yagi S, Carmichael J and Fay FS (1997) Slow cycling of unphosphorylated myosin is inhibited by calponin, thus keeping smooth muscle relaxed. Proc Natl Acad Sci USA 94: 7655–7660.

    PubMed  Google Scholar 

  • Marston S (1990) Stoichiometry and stability of caldesmon in native thin filaments from sheep aorta smooth muscle. Biochem J 272: 305–310.

    PubMed  Google Scholar 

  • Marston S, Burton D, Copeland O, Fraser I, Gao Y, Hodgkinson J, Huber P, Levine B, El-Mezgueldi M and Notarianni G (1998) Structural interactions between actin, tropomyosin, caldesmon and calcium binding protein and the regulation of smooth muscle thin filaments. Acta Physiol Scand 164: 401–414.

    PubMed  Google Scholar 

  • Marston SB, Fraser IC and Huber PJ (1994) Smooth muscle caldesmon controls the strong binding interaction between actin-tropomyosin and myosin. J Biol Chem 269: 32104–32109.

    PubMed  Google Scholar 

  • Marston SB and Huber PAJ (1996). Caldesmon. In: Barany M (ed.) Biochemistry of smooth muscle contraction. (pp. 77–90) Academic Press.

  • Marston SB and Lehman W (1985) Caldesmon is a Ca2+-regulatory component of native smooth-muscle thin filaments. Biochem J 231: 517–522.

    PubMed  Google Scholar 

  • Marston SB and Redwood CS (1991) The molecular anatomy of caldesmon. Biochem J 279: 1–16.

    PubMed  Google Scholar 

  • Marston SB and Redwood CS (1992) Inhibition of actin-tropomyosin activation of myosin MgATPase activity by the smooth muscle regulatory protein caldesmon. J Biol Chem 267: 16796–16800.

    PubMed  Google Scholar 

  • Marston SB and Redwood CS (1993) The essential role of tropomyosin in cooperative regulation of smooth muscle thin filament activity by caldesmon. J Biol Chem 268: 12317–12320.

    PubMed  Google Scholar 

  • Marston SB and Smith CJ (1984) Purification and properties of Ca2+-regulated thin filaments and F-actin from sheep aorta smooth muscle. J Musc Res Cell Motil 5: 559–575.

    Google Scholar 

  • McGough A (1998) F-actin-binding proteins. Curr Opin Struct Biol 8: 166–176.

    PubMed  Google Scholar 

  • McGough A, Pope B, Chiu W and Weeds A (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 138: 771–781.

    PubMed  Google Scholar 

  • McKillop DF and Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65: 693–701.

    PubMed  Google Scholar 

  • Mendelson R and Morris E (1994) Combining electron microscopy and X-ray crystallography data to study the structure of F-actin and its implications for thin-filament regulation in muscle. Adv Exp Med Biol 358: 13–23.

    PubMed  Google Scholar 

  • Menice CB, Hulvershorn J, Adam LP, Wang CL and Morgan KG (1997) Calponin and mitogen-activated protein kinase signalling in differentiated vascular smooth muscle. J Biol Chem 272: 25157–25161.

    PubMed  Google Scholar 

  • Mezgueldi M, Fattoum A, Derancourt J and Kassab R (1992) Mapping of the functional domains in the amino-terminal region of calponin. J Biol Chem 267: 15943–15951.

    PubMed  Google Scholar 

  • Mezgueldi M, Mendre C, Calas B, Kassab R and Fattoum A (1995) Characterization of the regulatory domain of gizzard calponin. Interactions of the 145–163 region with F-actin, calcium-binding proteins, and tropomyosin. J Biol Chem 270: 8867–8876.

    PubMed  Google Scholar 

  • Mino T, Yuasa U, Nakamura F, Naka M and Tanaka T (1998) Two distinct actin-binding sites of smooth muscle calponin. Eur J Biochem 251: 262–268.

    PubMed  Google Scholar 

  • Miyata H and Chacko S (1986) Role of tropomyosin in smooth muscle contraction: effect of tropomyosin binding to actin on actin activation of myosin ATPase. Biochem 25: 2725–2729.

    Google Scholar 

  • Moir AJ and Levine BA (1986) Protein cognitive sites on the surface of actin. A proton NMR study. J Inorg Biochem 28: 271–278.

    PubMed  Google Scholar 

  • Moody C, Lehman W and Craig R (1990) Caldesmon and the structure of smooth muscle thin filaments: electron microscopy of isolated thin filaments. J Musc Res Cell Motil 11: 176–185.

    Google Scholar 

  • Moon AL, Janmey PA, Louie KA and Drubin D (1993) Cofilin is an essential component of the yeast cortical cytoskeleton. J Cell Biol 120: 421–435.

    PubMed  Google Scholar 

  • Morgan KG and Leinweber BD (1998) PKC-dependent signalling mechanisms in differentiated smooth muscle. Acta Physiol Scand 164: 495–505.

    PubMed  Google Scholar 

  • Mornet D, Bonet-Kerrache A, Strasburg GM, Patchell VB, Perry SV, Huber PAJ, Marston SB, Slatter DA, Evans JS and Levine BA (1995) The binding of distinct segments of actin to multiple sites in the C-terminus of caldesmon: Comparative aspects of actin interaction with troponin-I and caldesmon. Biochem 34: 1893–1901.

    Google Scholar 

  • Noda S, Ito M, Watanabe S, Takahashi K and Maruyama K (1992) Conformational changes of actin induced by calponin. Biochem Biophys Res Commun 185: 481–487.

    PubMed  Google Scholar 

  • North AJ, Gimona M, Cross RA and Small JV (1994a) Calponin is localised in both the contractile apparatus and the cytoskeleton of smooth muscle cells. J Cell Sci 107: 437–444.

    PubMed  Google Scholar 

  • North AJ, Gimona M, Lando Z and Small JV (1994b) Actin isoform compartments in chicken gizzard smooth muscle cells. J Cell Sci. 107: 445–455.

    PubMed  Google Scholar 

  • O'Donoghue SI, Miki M and Dos RC (1992) Removing the two C-terminal residues of actin affects the filament structure. Archiv Biochem Biophys 293: 110–116.

    Google Scholar 

  • Obara K, Szymanski PT, Tao T and Paul RJ (1996) Effects of calponin on isometric force and shortening velocity in permeabilized taenia coli smooth muscle. Am J Physiol 270: C481-C487.

    Google Scholar 

  • Page R, Lindberg U and Schutt CE (1998) Domain motions in actin. J Mol Biol 280: 463–474.

    PubMed  Google Scholar 

  • Parker CA, Takahashi K, Tao T and Morgan KG (1994) Agonist-induced redistribution of calponin in contractile vascular smooth muscle cells. Am J Physiol 267: C1262-C1270

    PubMed  Google Scholar 

  • Parry DA (1975) Analysis of the primary sequence of alpha-tropomyosin from rabbit skeletal muscle. J Mol Biol 98: 519–535.

    PubMed  Google Scholar 

  • Phillips GNJ, Fillers JP and Cohen C (1986) Tropomyosin crystal structure and muscle regulation. J Mol Biol 192: 111–131.

    PubMed  Google Scholar 

  • Pittenger MF, Kistler A and Helfman DM (1995) Alternatively spliced exons of the beta tropomyosin gene exhibit different affinities for F-actin and effects with nonmuscle caldesmon. J Cell Sci 108: 3253–3265.

    PubMed  Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC and Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261: 58–65.

    Google Scholar 

  • Redwood CS and Marston SB (1993) Binding and regulatory properties of expressed functional domains of chicken gizzard smooth muscle caldesmon. J Biol Chem 268: 10969–10976.

    PubMed  Google Scholar 

  • Rosol M, Landis C, Lehman W, Craig R, Tobacman L (1998) 3D reconstruction of inhibited thin filaments containing mutant tropomyosin. Biophys J A143.

  • Saeki K, Sutoh K and Wakabayashi T (1996) Tropomyosin-binding site(s) on the Dictyostelium actin surface as identified by site-directed mutagenesis. Biochem 35: 14465–14472.

    Google Scholar 

  • Sanders C and Smillie LB (1984) Chicken gizzard tropomyosin: head-to-tail assembly and interaction with F-actin and troponin. Can J Biochem Cell Biol 62: 443–448.

    PubMed  Google Scholar 

  • Sanders C and Smillie LB (1985) Amino acid sequence of chicken gizzard beta-tropomyosin. Comparison of the chicken gizzard, rabbit skeletal, and equine platelet tropomyosins. J Biol Chem 260: 7264–7275.

    PubMed  Google Scholar 

  • Schutt CE, Rozycki MD, Chik JK and Lindberg U (1995) Structural studies on the ribbon-to-helix transition in profilin: actin crystals. Biophys J 68: 12S-17S.

    PubMed  Google Scholar 

  • Schwyter DH, Kron SJ, Toyoshima YY, Spudich JA and Reisler (1990) Subtilisin cleavage of actin inhibits in vitro sliding movement of actin filaments over myosin. J Cell Biol 111: 465–470.

    PubMed  Google Scholar 

  • Sellers JR, Goodson HV and Wang F (1996) A myosin family reunion. J Muscle Res Cell Motil 17: 7–22.

    PubMed  Google Scholar 

  • Small JV (1995) Structure-function relationships in smooth muscle: the missing links. BioEssays 17: 785–792.

    PubMed  Google Scholar 

  • Small JV and Gimona M (1998) The cytoskeleton of the vertebrate smooth muscle cell. Acta Physiol Scand 164: 341–348.

    PubMed  Google Scholar 

  • Sobue K, Muramoto Y, Fujita M and Kakiuchi S (1981) Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci USA 78: 5652–5655.

    PubMed  Google Scholar 

  • Squire JM and Morris EP (1998) A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J 12: 761–771.

    PubMed  Google Scholar 

  • Stafford WF, Mabuchi K, Takahashi K and Tao T (1995) Physical characterization of calponin. A circular dichroism, analytical ultracentrifuge, and electron microscopy study. J Biol Chem 270: 10576–10579.

    PubMed  Google Scholar 

  • Steinmetz MO, Stoffler D, Hoenger A, Bremer A and Aebi U (1997) Actin: from cell biology to atomic detail. J Struct Biol 119: 295–320.

    PubMed  Google Scholar 

  • Steinmetz MO, Stoffler D, Muller SA, Jahn W, Wolpensinger B, Goldie KN, Engel A, Faulstich H and Aebi U (1998) Evaluating atomic models of F-actin with an undecagold-tagged phalloidin derivative. J Mol Biol 276: 1–6.

    PubMed  Google Scholar 

  • Stewart M and McLachlan AD (1975) Fourteen actin-binding sites on tropomyosin? Nature 257: 331–333.

    PubMed  Google Scholar 

  • Stradal T, Kranewitter W, Winder SJ and Gimona M (1998) CH domains revisited. FEBS Lett 431: 134–137.

    PubMed  Google Scholar 

  • Strasser P, Gimona M, Moessler H, Herzog M and Small JV (1993) Mammalian calponin. Identification and expression of genetic variants. FEBS Lett 330: 13–18.

    PubMed  Google Scholar 

  • Swartz DR and Moss RL (1992) Influence of a strong-binding myosin analogue on calcium sensitive mechanical properties of skinned skeletal muscle fibres. J Biol Chem 267: 20497–20506.

    PubMed  Google Scholar 

  • Szymanski PT and Goyal RK (1999) Calponin binds to the 20 kilodalton regulatory light chain of myosin. Biophys J 76: A274

    Google Scholar 

  • Szymanski PT and Tao T (1997) Localization of protein regions involved in the interaction between calponin and myosin. J Biol Chem 272: 11142–11146.

    PubMed  Google Scholar 

  • Takahashi K, Hiwada K and Kokubu T (1988) Vascular smooth muscle calponin. A novel troponin T-like protein. Hypertension 11: 620–626.

    PubMed  Google Scholar 

  • Takahashi K, Mitsui-Saito M, Fuchibe K, Yamamura H, Taniguchi S, Katsuki M, Ozaki H, Tsuchiya T, Shibata N and Karaki H (1998) Targeted disruption of calponin results in rapid cross-bridge cycling and reduced force in phasic smooth muscle. Biophys J 74: A38

    Google Scholar 

  • Takahashi K, Hiwada K and Kokubu T (1986) Isolation and characterisation of a 34,000 kilodalton calmodulin and F-actin binding protein from chicken gizzard smooth muscle. Biochem Biophys Res Commun 141: 20–26.

    PubMed  Google Scholar 

  • Tirion MM and Ben-Avraham D (1993) Normal mode analysis of G-actin. J Mol Biol 230: 186–195.

    PubMed  Google Scholar 

  • Vancompernolle K, Gimona M, Herzog M, Vandamme J, Vandekerckhove J and Small V (1990) Isolation and sequence of a tropomyosin-binding fragment of turkey gizzard calponin. FEBS Lett 274: 146–150.

    PubMed  Google Scholar 

  • Vancompernolle K, Vandekerckhove J, Bubb MR and Korn ED (1991) The interfaces of actin and Acanthamoeba actobindin. Identification of a new actin-binding motif. J Biol Chem 266: 15427–15431.

    PubMed  Google Scholar 

  • Vandekerckhove J and Weber K (1981) Actin typing on total cellular extracts: a highly sensitive protein-chemical procedure able to distinguish different actins. Eur J Biochem 113: 595–603.

    PubMed  Google Scholar 

  • Velaz L, Ingraham RH and Chalovich JM (1990) Dissociation of the effect of caldesmon on the ATPase activity and on the binding of smooth heavy meromyosin to actin by partial digestion of caldesmon. J Biol Chem 265: 2929–2934.

    PubMed  Google Scholar 

  • Vibert P, Craig R and Lehman W (1993) Three-dimensional reconstruction of caldesmon-containing smooth muscle thin filaments. J Cell Biol 123: 313–321.

    PubMed  Google Scholar 

  • Vibert P, Craig R and Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266: 8–14.

    PubMed  Google Scholar 

  • Walsh MP, Carmichael JD and Kargacin GJ (1993) Characterization and confocal imaging of calponin in gastrointestinal smooth muscle. Am J Physiol 265: C1371-C1378.

    PubMed  Google Scholar 

  • Wang P and Gusev NB (1996) Interaction of smooth muscle calponin and desmin. FEBS Lett 392: 255–258.

    PubMed  Google Scholar 

  • Watson MH, Kuhn AE, Novy RE, Lin JJ and Mak AS (1990) Caldesmon-binding sites on tropomyosin. J Biol Chem 265: 18860–18866.

    PubMed  Google Scholar 

  • Whitby FG, Kent H, Stewart F, Stewart M, Xie X, Hatch V, Cohen C and Phillips-Gn J (1992) Structure of tropomyosin at 9 angstroms resolution. J Mol Biol 227: 441–452.

    PubMed  Google Scholar 

  • Wills FL, McCubbin WD, Gimona M, Strasser P and Kay CM (1994) Two domains of interaction with calcium binding proteins can be mapped using fragments of calponin. Protein Sci 3: 2311–2321.

    PubMed  Google Scholar 

  • Winder SJ, Allen BG, Fraser ED, Kang HM, Kargacin GJ and Walsh MP (1993) Calponin phosphorylation in vitro and in intact muscle. Biochem J 296: 827–836.

    PubMed  Google Scholar 

  • Winder SJ and Walsh MP (1990) Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J Biol Chem 265: 10148–10155.

    PubMed  Google Scholar 

  • Xu C, Craig R, Tobacman L, Horowitz R and Lehman W (1999) Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys J 77: 985–992.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgkinson, J.L. Actin and the smooth muscle regulatory proteins: a structural perspective. J Muscle Res Cell Motil 21, 115–130 (2000). https://doi.org/10.1023/A:1005697301043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005697301043

Keywords

Navigation