Skip to main content
Log in

In vitro biological activities of glycosylated human interleukin-1α, neoglyco IL-1α, coupled with N-acetylneuraminic acid

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In the previous study, N-acetylneuraminic acid (NANA) with C9 spacer was chemically coupled to human recombinant (rh) IL-1α in order to study the effect of glycosylation on its biological activities, and to develop IL-1 with less deleterious effects. In this study we examined a variety of IL-1 activities in vitro, including proliferative effect on T cells, antiproliferative effect on myeloid leukemic cells and melanoma cells, stimulatory effects on IL-6 synthesis by melanoma cells and PGE2 synthesis by fibroblast cells. NANA-introduced IL-1α (NANA-IL-1α) exhibited reduced activities about ten times compared with original IL-1α in all the activities performed in vitro. The competitive binding of 125I-IL-1α to mouse T cells and pre-B cells with unlabeled IL-1αs suggests the decrease in binding affinities of NANA-IL-1α to both type I and type II IL-1 receptors. Therefore, reduced activities of NANA-IL-1α well correlated with the decrease in its receptor binding affinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanaka T, Naruto M, Kawano G (1986) J Interferon Res 6: 429–35.

    Google Scholar 

  2. Tsuda E, Kawanishi G, Ueda M, Masuda S, Sasaki R (1990) Eur J Biochem 188: 405–11.

    Google Scholar 

  3. Fischer T, Thoma B, Scheurich P, Pfizenmaier K (1990) J Biol Chem 265: 1710–17.

    Google Scholar 

  4. Mancilla J, Ikejima T, Dinarello CA (1992) Lymphokine Cytokine Res 11: 197–205.

    Google Scholar 

  5. Ashwell G, Harford J (1982) Annu Rev Bichem 51: 531–54.

    Google Scholar 

  6. Dinarello CA (1996) Blood 87: 2095–147.

    Google Scholar 

  7. Takei Y, Wada K, Chiba T, Hayashi H, Ishihara H, Onozaki K (1994) Lymphokine Cytokine Res 13: 265–70.

    Google Scholar 

  8. Takei Y, Wada K, Chiba T, Hayashi H, Yamada M, Kuwashima J, Onozaki K (1995) Lymphokine Cytokine Res 15: 713–19.

    Google Scholar 

  9. Takei Y, Yang D, Chiba T, Nabeshima S, Naruoka M, Wada K, Onozaki K (1996) J Interferon Cytokine Res 16: 333–36.

    Google Scholar 

  10. Chiba T, Nabeshima S, Takei Y, Onozaki K (1998) Glycoconjugate J 15: 63–7.

    Google Scholar 

  11. Nabeshima S, Chiba T, Takei Y, Watanabe S, Okuyama H, Onozaki K (1998) Glycoconjugate J 15: 69–74.

    Google Scholar 

  12. Nabeshima S, Chiba T, Takei Y, Ono A, Moriya K, Onozaki (1998) Glycoconjugate J 15: 491–98.

    Google Scholar 

  13. Varki A (1992) Glycobiology 2: 25–40.

    Google Scholar 

  14. Lee RT (1982) Biochemistry 21: 1045–50.

    Google Scholar 

  15. van Rijk, Heinsius HL, van den Homer CJ (1976) Vox Sang 30: 412–19.

    Google Scholar 

  16. Crocker PA, Feizi T (1996) Curr Opin Struct Biol 6: 679–91.

    Google Scholar 

  17. Vinson M, Mucklow S, May AP, Jones EY, Kelm S, Crocker PR (1997) Tre GlycoSci Glycotech 9: 283–97.

    Google Scholar 

  18. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS (1987) Science 236: 582–85.

    Google Scholar 

  19. Hopkins SJ, Humphreys M (1989) J Immunol Methods 120: 271–76.

    Google Scholar 

  20. Matsuda T, Hirano T, Kishimoto T (1988) Eur J Immunol 18: 951–56.

    Google Scholar 

  21. Mosmann T (1983) J Immunol Methods 65: 55–63.

    Google Scholar 

  22. Ruff MR, Gifford GE (1980) J Immunol 125: 1671–77.

    Google Scholar 

  23. Endo Y, Matsushima K, Oppenheim JJ (1986) Immunobiol 172: 316–22.

    Google Scholar 

  24. Onozaki K, Tamatani T, Hashimoto T, Matsushima K (1987) Cancer Res., 47: 2397–402.

    Google Scholar 

  25. Onozaki K, Matsushima K, Aggarwal BB, Oppenheim JJ (1985) J Immunol 135: 3962–68.

    Google Scholar 

  26. Elias JA, Lentz V (1990) J Immunol 145: 161–66.

    Google Scholar 

  27. Takii T, Akahoshi T, Kato K, Hayashi H, Marunouchi T, Onozaki K (1992) Eur J Immunol 22: 1221–27.

    Google Scholar 

  28. Sims JE, Acres RB, Grubin CE, McMahan CJ, Wignall JM, March CJ, Dower SK (1989) Proc Natl Acad Sci USA 86: 8946–50.

    Google Scholar 

  29. McMahan CJ, Slack JL, Mosley B, Cosman D, Lupton SD, Brunton LL, Grubin CE, Wignall JM, Jenkins NA, Brannan CI, Copeland NG, Huebner K, Croce CM, Cannizzarro LA, Benjamin D, Dower SK, Spriggs MK, Sims JE (1991) EMBO J 10: 2821–32.

    Google Scholar 

  30. Graves BJ, Hatada MH, Hendrickson WA, Miller JK, Madison VS, Satow Y (1990) Biochemistry 29: 2679–84.

    Google Scholar 

  31. Colotta F, Dower SK, Sims JE, Mantovani A (1994) Immunol Today 15: 562–66.

    Google Scholar 

  32. Stylianou E, O'Neill LAJ, Rawlinson L, Edbrooke MR, Woo P, Saklatvala J (1992) J Biol Chem 267: 15836–41.

    Google Scholar 

  33. O'Neill LAJ, Greene C (1998) J Leuk Biol 63: 650–57.

    Google Scholar 

  34. Greenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA (1995) J Biol Chem 270: 13757–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriya, K., Chiba, T., Nabeshima, S. et al. In vitro biological activities of glycosylated human interleukin-1α, neoglyco IL-1α, coupled with N-acetylneuraminic acid. Glycoconj J 16, 563–568 (1999). https://doi.org/10.1023/A:1007082207188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007082207188

Navigation