Skip to main content
Log in

The Third Tubulin Pool

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Tubulin normally undergoes a cycle of detyrosination/tyrosination on the carboxy terminus of its α-subunit and this results in subpopulations of tyrosinated tubulin and detyrosinated tubulin. Brain tubulin preparations also contain a third major tubulin subpopulation which is non-tyrosinatable. This review describes the purification and the structural characterization of non-tyrosinatable tubulin. This tubulin variant lacks a carboxyterminal glutamyl-tyrosine group on its α-subunit (Δ2-tubulin). Δ2-tubulin is generated from detyrosinated tubulin through an irreversible reaction. Δ2-tubulin accumulates in neurons and in stable microtubule assemblies. It also accumulates in some tumor cells due to the frequent loss of tubulin tyrosine ligase in such cells. Δ2-tubulin may be a useful marker of malignancy in human tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. LeDizet, M., and Piperno, G. 1987. Identification of an acetylation site of Chlamydomonas alpha-tubulin. Proc. Nat. Acad. Sci. USA 84:5720-5724.

    Google Scholar 

  2. Eddé, B., Rossier, J., Le Caer, J. P., Desbruyè res, E., Gros, F., and Denoulet, P. 1990. Posttranslational glutamylation of alphatubulin. Science 247:83-85.

    Google Scholar 

  3. Alexander, J. E., Hunt, D. F., Lee, M. K., Shabanowitz, J., Michel, H., Berlin, S. C., MacDonald, T. L., Sundberg, R. J., Rebhun, L. I., and Frankfurter, A. 1991. Characterization of posttranslational modifications in neuron-specific class III β-tubulin by mass spectrometry. Proc. Nat. Acad. Sci. USA 88:4685-4689.

    Google Scholar 

  4. Arce, C. A., Rodriguez, J. A., Barra, H. S., and Caputto, R. 1975. Incorporation of L-tyrosine, L-phenylalanine and L-3,4-dihydroxyphenylalanine as single units into rat brain tubulin. Eur. J. Biochem. 59:145-149.

    Google Scholar 

  5. Argarañ a, C. E., Arce, C. A., Barra, H. S., and Caputto R. 1977. In vivo incorporation of [14C] tyrosine into the C-terminal position of the α-subunit of tubulin. Arch. Biochem. Biophys. 180:264-268.

    Google Scholar 

  6. Raybin, D., and Flavin, M. 1977a. Enzyme which specifically adds tyrosine to the alpha chain of tubulin. Biochemistry 16:2189-2194.

    Google Scholar 

  7. Wehland, J., Schroeder, H. C., and Weber, K. 1986. Isolation and purification of tubulin tyrosine ligase. Meth. Enzymol. 134:170-179.

    Google Scholar 

  8. Barra, H. S., Arce, C. A., and Argarañ a, C. E. 1988. Posttranslational tyrosination/detyrosination of tubulin. Mol. Neurobiol. 2:133-153.

    Google Scholar 

  9. MacRae, T. H. 1997. Tubulin post-translational modificationsenzymes and their mechanisms of action. Eur. J. Biochem. 244:265-278.

    Google Scholar 

  10. Barra, H. S., Uñ ates, L. E., Sayavedra, M., and Caputto, R. 1972. Capacities for binding amino acids by tRNAs from rat brain and their changes during development. J. Neurochem. 19:2289-2297.

    Google Scholar 

  11. Barra, H. S., Rodriguez, J. A., Arce, C. A., and Caputto, R. 1973a. A soluble preparation from rat brain that incorporates into its own proteins [14C] arginine by ribonuclease-sensitive system and [14C] tyrosine by a ribonuclease-insensitive system. J. Neurochem. 20:97-108.

    Google Scholar 

  12. Barra, H. S., Arce, C. A., Rodriguez, J. A., and Caputto, R. 1973b. Incorporation of phenylalanine as single unit into rat brain protein: Reciprocal inhibition by phenylalanine and tyrosine of their respective incorporations. J. Neurochem. 21:1241-1251.

    Google Scholar 

  13. Barra, H. S., Arce, C. A., Rodriguez, J. A., and Caputto, R. 1974. Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem., Biophys. Res. Commun. 60:1384-1390.

    Google Scholar 

  14. Hallak, M. E., Rodriguez, J. A., Barra, H. S., and Caputto, R. 1977. Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin. FEBS Lett. 73:147-150.

    Google Scholar 

  15. Argarañ a, C. E., Barra, H. S., and Caputto, R. 1978. Release of [14C]tyrosine from tubulinyl[14C]tyrosine by brain extract. Separation of a carboxypeptidase from tubulin:tyrosine ligase. Mol. Cell. Biochem. 19:17-21.

    Google Scholar 

  16. Argarañ a, C. E., Barra, H. S., and Caputto, R. 1980. Tubulinyltyrosine carboxypeptidase from chicken brain: properties and partial purification. J. Neurochem. 34:114-118.

    Google Scholar 

  17. Little, M., and Seehaus, T. 1988. Comparative analysis of tubulin sequences. Comp. Biochem. Physiol. 90B:655-670.

    Google Scholar 

  18. Preston, S. F., Deanin, G. G., Hanson, R. D., and Gordon, M. W. 1979. The phylogenic distribution of tubulin:tyrosine ligase. J. Mol. Evol. 13:233-244.

    Google Scholar 

  19. Kobayashi, T., and Flavin, M. 1981. Tubulin tyrosylation in invertebrates. Comp. Biochem. Physiol. 69B:387-392.

    Google Scholar 

  20. Thompson, W. C. 1982. The cyclic tyrosination/detyrosination of alpha tubulin. Meth. Cell Biol. 24:235-255.

    Google Scholar 

  21. Gabius, H. J., Graupner, G., and Cramer, F. 1983. Activity patterns of aminoacyl-tRNA synthetases, tRNA methylases, arginyltransferases and tubulin:tyrosine ligase during development and ageing of Caenorhabditis elegans. Eur. J. Biochem. 131:231-234.

    Google Scholar 

  22. Steiger, J., Wyler, T., and Seebeck, T. 1984. Partial purification and characterization of microtubular protein from Trypanosoma brucei. J. Biol. Chem. 259:4596, 4602.

    Google Scholar 

  23. Schröder, H. C., Wehland, J., and Weber, K. 1985. Purification of brain tubulin:tyrosine ligase by biochemical and immunological methods. J. Cell Biol. 100:276-281.

    Google Scholar 

  24. Ersfeld, K., Wehland, J., Plessman, U., Dodemont, H., Gerke, V., and Weber, K. 1993. Characterization of the tubulin-tyrosine ligase. J. Cell Biol. 120:725-732.

    Google Scholar 

  25. Arce, C. A., Hallak, M. E., Rodriguez, J. A., Barra, H. S., and Caputto, R. 1978. Capability of tubulin and microtubules to incorporate and to release tyrosine and phenylalanine and the effect of the incorporation of these amino acids on tubulin assembly. J. Neurochem. 31:205-210.

    Google Scholar 

  26. Rodriguez, J. A., and Borisy, G. G. 1979. Tyrosination state of free tubulin subunits and tubulin disassembled from microtubules of rat brain tissue. Biochem. Biophys. Res. Commun. 83:579-586.

    Google Scholar 

  27. Beltramo, D. M., Arce, C. A., and Barra, H. S. 1987. Tubulin but not microtubules is the substrate of tubulin:tyrosine ligase in mature avian erythrocytes. J. Biol. Chem. 262:15673-15677.

    Google Scholar 

  28. Bré, M. H., Kreis, T. E., and Karsenti, E. 1987. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurence of noncentrosomal, stable detyrosinated microtubules. J. Cell Biol. 105:1283-1296.

    Google Scholar 

  29. Gundersen, G. G., Khawaja, S., and Bulinski, J. C. 1987. Postpolymerisation detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules. J. Cell Biol. 105:251-264.

    Google Scholar 

  30. Kumar, N., and Flavin, M. 1981. Preferential action of brain detyrosinolating carboxypeptidase on polymerized tubulin. J. Biol. Chem. 256:7678-7686.

    Google Scholar 

  31. Arce, C. A., and Barra, H. S. 1983. Association of tubulinyl-tyrosine carboxypeptidase with microtubules. FEBS Lett. 157: 75-78.

    Google Scholar 

  32. Arce, C. A., and Barra, H. S. 1985. Release of C-terminal tyrosine from tubulin and microtubules at steady state. Biochem. J. 226:311-317.

    Google Scholar 

  33. Sironi, J. J., Barra, H. S., and Arce, C. A. 1997. The association of tubulin carboxypeptidase activity with microtubules in brain extracts is modulated by phosphorylation/dephosphorylation processes. Mol. Cell. Biochem. 170:9-16.

    Google Scholar 

  34. Wehland, J., Willingham, M. C., and Sandoval, I. V. 1983. A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. I. Biochemical characterization, effects on microtubule polymerisation in vitro, and microtubule polymerisation and organization in vivo. J. Cell Biol. 97:1467-1475.

    Google Scholar 

  35. Gundersen, G. G., Kalnoski, M. H., and Bulinski, J. C. 1984. Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo. Cell 38:779-789.

    Google Scholar 

  36. Gundersen, G. G., and Bulinski, J. C. 1986. Microtubule arrays in differentiated cells contain elevated levels of post-translationally modified form of tubulin. Eur. J. Cell Biol. 42:288-294.

    Google Scholar 

  37. Kreis, T. E. 1987. Microtubules containing detyrosinated tubulin are less dynamic. EMBO J. 6:2597-2606.

    Google Scholar 

  38. Schulze, E., Asai, D., Bulinski, J. C., and Kirschner, M. 1987. Posttranslational modification and microtubule stability. J. Cell Biol. 105:2167-2177.

    Google Scholar 

  39. Wehland, J., and Weber, K. 1987b. Turnover of the carboxyterminal tyrosine of alpha-tubulin and means of reaching elevated levels of detyrosination in living cells. J. Cell Sci. 88:185-203.

    Google Scholar 

  40. Bosc, C., Cronk, J. D., Pirollet, F., Watterson, D. M., Haiech, J., Job, D., and Margolis, R. L. 1996. Cloning, expression, and properties of the microtubule-stabilizing protein STOP. Proc. Nat. Acad. Sci. USA. 93:2125-2130.

    Google Scholar 

  41. Deanin, G. G., Preston, S. F., Hanson, R. K., and Gordon, M. W. 1980. On the mechanism of turnover of the carboxy-terminal tyrosine of the alpha chain of tubulin. Eur. J. Biochem. 109:207-216.

    Google Scholar 

  42. Modesti, N. M., Argarañ a, C. E., Barra, H. S., and Caputto, R. 1984. Inhibition of brain tubulinyl-tyrosine carboxypeptidase by endogeneous proteins. J. Neurosci. Res. 12:583-593.

    Google Scholar 

  43. Webster, D. R., Modesti, N. M., and Bulinski, J. C. 1992. Regulation of cytoplasmic tubulin carboxypeptidase activity during neural and muscle differentiation: characterization using a microtubule based assay. Biochemistry 31:5849-5856.

    Google Scholar 

  44. Webster, D. R., and Oxford, M. G. 1996. Regulation of cytoplasmic tubulin carboxypeptidase activity in vitro by cations and sulfhydryl-modifying compounds. J. Cell Biochem. 60:424-436.

    Google Scholar 

  45. Paturle, L., Wehland, J., Margolis, R. L., and Job, D. 1989. Complete separation of tyrosinated, detyrosinated, and nontyrosinatable brain tubulin subpopulations using affinity chromatography. Biochemistry 28:2698-2704.

    Google Scholar 

  46. Khawaja, S., Gundersen, G. G., and Bulinski, J. C. 1988. Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J. Cell Biol. 106:141-149.

    Google Scholar 

  47. Webster, D. R., Wehland, J., Weber, K., and Borisy, G. G. 1990. Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J. Cell Biol. 111:113-122.

    Google Scholar 

  48. Raybin, D., and Flavin, M. 1977b. Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J. Cell Biol. 73:492-504.

    Google Scholar 

  49. Rodriguez, J. A., and Borisy, G. G. 1978. Modification of the C-terminus of brain tubulin during development. Biochem. Biophys. Res. Commun. 83:579-586.

    Google Scholar 

  50. Barra, H. S., Arce, C. A., and Caputto, R. 1980. Total tubulin and its aminoacylated and non-aminoacylated forms during the development of rat brain. Eur. J. Biochem. 109: 439-446.

    Google Scholar 

  51. Flavin, M., Kobayashi, T., and Martensen, T. M. 1982. Tubulintyrosine ligase from brain. Methods Cell Biol. 24:257-263.

    Google Scholar 

  52. Villasante, A., Wag, D., Dobner, P., Dolph, P., Lewis, S. A., and Cowan, N. J. 1986. Six mouse α-tubulin mRNAs encode five distinct tubulin isotypes: testis-specific expression of two sister genes. Mol. Cell. Biol. 6:2409-2419.

    Google Scholar 

  53. Gu, W. Lewis, S. A., and Cowan, N. J. 1988. Generation of antisera that discriminate among mammalian α-tubulins: introduction of specialized isotypes into cultured cells results in their coassembly without disruption of normal microtubule function. J. Cell Biol. 106:2011-2022.

    Google Scholar 

  54. Wehland, J., and Weber, K. 1987a. Tubulin-tyrosine ligase has a binding site on beta-tubulin: a two-domain structure of the enzyme. J. Cell Biol. 104:1059-1067.

    Google Scholar 

  55. Wehland, J., Schroeder, H. C., and Weber, K. 1984. Amino acid requirements in the epitope recognized by the α-tubulinspecific rat monoclonal antibody YL 1/2. EMBO J. 3:1295-1300.

    Google Scholar 

  56. Patude-Lafanechè re, L., Eddé, B., Denoulet, P., Van Dorsselaer, A., Mazarguil, H., Le Caer, J. P., Wehland, J., and Job, D. 1991. Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry 30:10523-10528.

    Google Scholar 

  57. Rüdiger, M., Wehland, J., and Weber, K. 1994. The carboxyterminal peptide of detyrosinated αtubulin provides a minimal system to study the substrate specificity of tubulin-tyrosine ligase. Eur. J. Biochem. 220:309-320.

    Google Scholar 

  58. Paturle-Lafanechè re, L., Manier, M., Trigault, N., Pirollet, F., Mazarguil, H., and Job, D. 1994. Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J. Cell Sci. 107:1529-1543.

    Google Scholar 

  59. Alonso, A., Del, C., Arce, C. A., and Barra, H. S. 1993. Tyrosinatable and non-tyrosinatable tubulin subpopulations in rat muscle in comparison with those in brain. Biochim. Biophys. Acta 1163:26-30.

    Google Scholar 

  60. Lafanechè re, L., Courtay-Cahen, C., Kawakami, T., Jacrot, M., Rüdiger, M., Wehland, J., Job, D., and Margolis, R. L. 1998. Suppression of tubulin tyrosine ligase during tumor growth. J. Cell Sci. 111:171-181.

    Google Scholar 

  61. Guillaud, L., Bosc, C., Fourest-Lieuvin, A., Denarier, E., Pirollet, F., Lafanechè re, L., and Job, D. 1998. STOP proteins are responsible for the high degree of microtubule stabilization observed in neuronal cells. J. Cell Biol. 142:167-179.

    Google Scholar 

  62. Mary, J., Redeker, V., Le Caer, J. P., Rossier, J., and Schmitter, J. M. 1996. Posttranslational modifications in the C-terminal tail of axonemal tubulin from sea urchin sperm. J. Biol. Chem. 271:9928-9933.

    Google Scholar 

  63. Multigner, L., Pignot-Paintrand, I., Saoudi, Y., Job, D., Plessman, U., Rüdiger, M., and Weber, K. 1996. The A and B tubules of the outer doublets of sea urchin sperm axonemes are composed of different tubulin variants. Biochemistry 33:10862-10871.

    Google Scholar 

  64. Sato, H., Nagai, T., Kuppuswamy, D., Narishige, T., Koide, M., Menick, D. R., and Cooper IV, G. 1997. Microtubule stabilization in pressure overload cardiac hypertrophy. J. Cell Biol. 139:963-973.

    Google Scholar 

  65. Smertenko, A., Blume, Y., Viklicy, V, Opatrny, Z., and Draber, P. 1997. Post-translational modifications and multiple tubulin isoforms in Nicotinia tabacum L. cells. Planta 201:349-358.

    Google Scholar 

  66. Manier, M., Christina, N., Chatellard-Causse, C., Mouchet, P., Herman, J. P., and Feuerstein, C. 1997. Striatal target-induced axonal branching of dopaminergic mesenphalic neurons in culture via diffusible factors. J. Neurosci. Res. 48:358-371.

    Google Scholar 

  67. Maxwell, S. A., Ames, S. K., Sawai, E. T., Decker, G. L., Cook, R. G., and Butel, J. S. 1991. Simian virus 40 large T antigen and p53 are microtubule-associated proteins in transformed cells. Cell growth Differ. 2:115-127.

    Google Scholar 

  68. Reszka, A. A., Seger, R., Diltz, C. D., Krebs, E. G., and Fisher, E. H. 1995. Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc. Nat. Acad Sci. USA 92:8881-8885.

    Google Scholar 

  69. Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A., and Geiger, B. 1996. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr. Biol. 6:1279-1289.

    Google Scholar 

  70. Murphy, M., Hinman, A., and Levine, A. J. 1996. Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev. 10:2971-2980.

    Google Scholar 

  71. Thomas, R. C., Edwards, M. J., and Marks, R. 1996. Translocation of the retinoblastoma gene product during mitosis. Exp. Cell Res. 223:227-232.

    Google Scholar 

  72. Trielli, M. O., Andreassen, P. R., Lacroix, F. B., and Margolis, R. L. 1996. Differential taxol arrest of transformed and nontransformed cells in the G1 phase of the cell cycle, and specific-related mortality of transformed cells. J. Cell Biol. 135:689-700.

    Google Scholar 

  73. Li, F., Ambrosini, G., Chu, E. Y., Plescia, J., Tognin, S., Marchisio, P. C., and Altieri, D. C. 1998. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580-584.

    Google Scholar 

  74. Lingle, W. L., Lutz, W. H., Ingle, J. N., Nita, J. M., and Salisbury, J. L. 1998. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Nat. Acad Sci. USA 95:2950-2955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafanechère, L., Job, D. The Third Tubulin Pool. Neurochem Res 25, 11–18 (2000). https://doi.org/10.1023/A:1007575012904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007575012904

Navigation