Skip to main content
Log in

Is the Major Capsid Protein of Iridoviruses a Suitable Target for the Study of Viral Evolution?

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Iridoviruses are large cytoplasmic DNA viruses that are specific for different insect or vertebrate hosts. The major structural component of the non-enveloped icosahedral virus particles is the major capsid protein (MCP) which appears to be highly conserved among members of the family Iridoviridae, Phycodnaviridae, and African swine fever virus. The amino acid sequences of the known MCPs were used in comparative analyses to elucidate the phylogenic relationships between different cytoplasmic DNA viruses including three insect iridoviruses (Tipula iridescent virus, Simulium iridescent virus, Chilo iridescent virus), seven vertebrate iridoviruses isolated either from fish (lymphocystis disease virus, rainbow trout virus, European catfish virus, doctor fish virus), amphibians (frog virus 3), or reptiles (turtle virus 3, turtle virus 5), one member of the family Phycodnaviridae (Paramecium bursaria Chlorella virus type 1), and African swine fever virus. These analyses revealed that the amino acid sequence of the MCP is a suitable target for the study of viral evolution since it contains highly conserved domains, but is sufficiently diverse to distinguish closely related iridovirus isolates. Furthermore the results suggest that a substantial revision of the taxonomy of iridoviruses based on molecular phylogeny is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xeros N., Nature 174, 562-563, 1954.

    Google Scholar 

  2. Lowe K., Fish disease. IV. Transaction of the Norfolk and Norwich National Society for Fishes, 1874, 21-56.

  3. Walker R., Virology 18, 503-505, 1962.

    Google Scholar 

  4. Murphy F.A., Fauquet C.M., Bishop D.H.L., Ghabrial S.A., Jarvis A.W., Martelli G.P., Mayo M.A., and Summers M.D. (eds) Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag, Wien & New York, 1995, pp. 95-99.

    Google Scholar 

  5. Goorha R., and Murti K.G., Proc Natl Acad Sci 79, 248-252, 1982.

    Google Scholar 

  6. Darai G., Anders K., Koch H.G., Delius H., Gelderblom H., Samalecos C., and Flügel R.M., Virology 126, 466-479, 1983.

    Google Scholar 

  7. Darai G., Delius H., Clarke J., Apfel H., Schnitzler P., and Fügel R.M., Virology 146, 292-301, 1985.

    Google Scholar 

  8. Schnitzler P., Rösen-Wolff A., and Darai G. (ed.), Molecular biology of fish lymphocystis disease virus. In Molecular Biology of Iridoviruses. Boston, Dordrecht & London, Kluwer Academic Publishers, 1990, pp. 203-234.

  9. Delius H., Darai G., and Flügel R.M., J Virol 49, 609-614, 1984.

    Google Scholar 

  10. Schnitzler P., Soltau J.B., Fischer M., Reisner H., Scholz J., Delius H., and Darai G., Virology 160, 66-74, 1987.

    Google Scholar 

  11. Soltau J.B., Fischer M., Schnitzler P., Scholz J., and Darai G., J Gen Virol 68, 2717-2722, 1987.

    Google Scholar 

  12. Soltau J.B., Fischer M., Schnitzler P., Scholz J., and Darai G., J Gen Virol 68, 2717-2722, 1987.

    Google Scholar 

  13. Ward V.K. and Kalmakoff J., Virology 160, 507-510, 1987.

    Google Scholar 

  14. Willis D.B. (ed.) Iridoviridae. Current Topics in Microbiology and Immunology 116, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.

    Google Scholar 

  15. Darai G. (ed.) Molecular Biology of Iridoviruses. Developments in Molecular Virology. Kluwer Academic Publishers, Boston, Dordrecht, London, 1990.

    Google Scholar 

  16. Williams T., Adv Virus Res 46, 345-412, 1996.

  17. Tidona C.A. and Darai G., Virology 230, 207-216, 1997.

    Google Scholar 

  18. Goorha R., Willis D.B., and Granoff A., J Virol 21, 802-805, 1977.

    Google Scholar 

  19. Garcia-Beato R., Salas M.L., Vinuela E., and Salas J., Virology 188, 637-649, 1992.

    Google Scholar 

  20. Grabherr R., Strasser P., and Van Etten J.L., Virology 188, 721- 731, 1992.

    Google Scholar 

  21. Kelly D.C., Insect iridescent viruses. In Current Topics in Microbiology and Immunology 116. Edited by D.B. Willis, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 23- 35, 1985.

    Google Scholar 

  22. Willis D.B., Taxonomy of iridoviruses. In Molecular Biology of Iridoviruses. Edited by G. Darai, Boston, Dordrecht & London, Kluwer Academic Publishers, pp. 1-12, 1990.

    Google Scholar 

  23. Ward V.K. and Kalmakoff J., Invertebrate iridoviridae. In Viruses of invertebrates. Edited by E. Kurstak, Marcel Dekker Inc., New York, pp. 197-226, 1991.

    Google Scholar 

  24. Williams T., Virus Res 33, 99-121, 1994.

    Google Scholar 

  25. Kelly D.C., Edwards M.L., and Robertson J.S., Annals Appl Biol 90, 369-374, 1978.

    Google Scholar 

  26. Stohwasser R., Raab K., Schnitzler P., Janssen W., and Darai G., J Gen Virol 74, 873-879, 1993.

    Google Scholar 

  27. Schnitzler P. and Darai G., J Gen Virol 74, 2143-2150, 1993.

    Google Scholar 

  28. Willis D.B., Goorha R., Miles M., and Granoff A., J Virol 24, 326-342, 1977.

  29. Moore N.F. and Kelly D.C., J Invert Pathol 36, 415-422, 1980.

    Google Scholar 

  30. Flügel R.M., Darai G., and Gelderblom H., Virology 122, 48- 55, 1982.

    Google Scholar 

  31. Davison S., Carne A., McMillan N.A.J., and Kalmakoff J., Arch Virol 123, 229-237, 1992.

    Google Scholar 

  32. Cameron I.R., Virology 178, 35-42, 1990.

    Google Scholar 

  33. Mao J., Tham T.N., Gentry G.A., Aubertin A., and Chinchar V.G., Virology 216, 431-436, 1996.

    Google Scholar 

  34. Tajbakhsh S., Lee P.E., Watson D.C., and Seligy V.L., J Virol 64, 125-136, 1990.

    Google Scholar 

  35. Graves M.V. and Meints R.H., Virology 188, 198-207, 1992.

    Google Scholar 

  36. Van Etten J.L., Meints R.H., Kuczmarski D., Burbank D.E., and Lee K., Proc Natl Acad Sci USA 79, 3867-3871, 1982.

    Google Scholar 

  37. López-Otín C., Freije J.M.P., Parra F., Méndez E., and Viñuela E., Virology 175, 477-484, 1990.

    Google Scholar 

  38. Almeida J.D., Waterson A.P., and Plowright W., Arch Gesamte Virusforsch 20, 392-396, 1967.

    Google Scholar 

  39. Elliott R.M. and Kelly D.C., J Virol 33, 28-51, 1980.

    Google Scholar 

  40. Aubertin A.M., Tondre L., Martin J.P., and Kirn A., FEBS Lett 112, 233-238, 1980.

    Google Scholar 

  41. Mao J., Hedrick R.P., and Chinchar V.G., Virology 229, 212- 220, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tidona, C.A., Schnitzler, P., Kehm, R. et al. Is the Major Capsid Protein of Iridoviruses a Suitable Target for the Study of Viral Evolution?. Virus Genes 16, 59–66 (1998). https://doi.org/10.1023/A:1007949710031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007949710031

Navigation