Skip to main content
Log in

The effect of processing temperature and time on the structure and fracture characteristics of self-reinforced composite poly(methyl methacrylate)

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel material, self-reinforced composite poly(methyl methacrylate) (SRC-PMMA) has been previously developed in this laboratory. It consists of high-strength PMMA fibers embedded in a matrix of PMMA derived from the fibers. As a composite material, uniaxial SRC-PMMA has been shown to have greatly improved flexural, tensile, fracture toughness and fatigue properties when compared to unreinforced PMMA. Previous work examined one empirically defined processing condition. This work systematically examines the effect of processing time and temperature on the thermal properties, fracture toughness and fracture morphology of SRC-PMMA produced by a hot compaction method. Differential scanning calorimetry (DSC) shows that composites containing high amounts of retained molecular orientation exhibit both endothermic and exothermic peaks which depend on processing times and temperatures. An exothermic release of energy just above Tg is related to the release of retained molecular orientation in the composites. This release of energy decreases linearly with increasing processing temperature or time for the range investigated. Fracture toughness results show a maximum fracture toughness of 3.18 MPa m1/2 for samples processed for 65 min at 128°C. Optimal structure and fracture toughness are obtained in composites which have maximum interfiber bonding and minimal loss of molecular orientation. Composite fracture mechanisms are highly dependent on processing. Low processing times and temperatures result in more interfiber/matrix fracture, while higher processing times and temperatures result in higher ductility and more transfiber fracture. Excessive processing times result in brittle failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Maloney, M. Jasty, D. W. Burke, D. O. O'conner, E. B. Zalenski, C. Bragdon and W. H. Harris, Clin. Orthop. Rel. Res. 249 (1989) 129.

    Google Scholar 

  2. L. D. T. Topoleski, P. Ducheyne and J. M. Cuckler, J. Biomater. Res. 24 (1990) 135.

    Google Scholar 

  3. S. P. James, M. Jasty, J. Davies, H. Piehler and W. H. Harris, J. Biomater. Res. 26 (1992) 651.

    Google Scholar 

  4. S. Saha and S. Pal, J. Biomater. Res. 20 (1986) 817.

    Google Scholar 

  5. K. Ekstrand, I. E. Ruyter and H. Wellendorf, J. Biomater. Res. 21 (1987) 1065.

    Google Scholar 

  6. B. Pourdeyhimi, H. H. Robinson IV, P. Schwartz and H. D. Wagner, Ann. Biomed. Engng 14 (1986) 277.

    Google Scholar 

  7. C. A. Buckley, E. P. Lautenschlager and J. L. Gilbert, J. Appl. Polym. Sci. 44 (1992) 1321.

    Google Scholar 

  8. J. L. Gilbert, D. S. Ney and E. P. Lautenschlager, Biomaterials 16 (1995) 1043.

    Google Scholar 

  9. D. D. Wright, E. P. Lautenschlager and J. L. Gilbert, J. Biomater. Res. 36 (1997) 441.

    Google Scholar 

  10. P. TÖrmÄlÄ, J. Vasenius, S. VainionpÄÄ, J. Laiho, T. Pohjonen and P. Rokkanen, J. Biomater. Res. 25 (1991) 1.

    Google Scholar 

  11. S. Ferguson, D. Wahl and S. Gogolewski, J. Biomater. Res. 30 (1996) 543.

    Google Scholar 

  12. M. I. Abo El-maaty, D. C. Bassett, R. H. Olley, P. J. Hine and I. M. Ward, J. Mater. Sci. 31 (1996) 1157.

    Google Scholar 

  13. J. Rasburn, P. J. Hine, I. M. Ward, R. H. Olley, D. C. Bassett and M. A. Kabeel, J. Mater. Sci. 30 (1995) 615.

    Google Scholar 

  14. P. J. Hine, I. M. Ward, R. H. Olley and D. C. Bassett, J. Mater. Sci. 28 (1993) 316.

    Google Scholar 

  15. M. A. Kabeel, D. C. Bassett, R. H. Olley, P. J. Hine and I. M. Ward, J. Mater. Sci. 29 (1994) 4694.

    Google Scholar 

  16. M. A. Kabeel, D. C. Bassett, R. H. Olley, P. J. Hine and I. M. Ward, J. Mater. Sci. 30 (1995) 601.

    Google Scholar 

  17. R. H. Olley, D. C. Bassett, P. J. Hine and I. M. Ward, J. Mater. Sci. 28 (1993) 1107.

    Google Scholar 

  18. B. Tissington, G. Pollard and I. M. Ward, J. Mater. Sci. 26 (1991) 82.

    Google Scholar 

  19. ASTM Specification E399. In ASTM Standards, Philadelphia, PA, USA: ASTM, 1985.

  20. F. Rodriguez, “Principles of polymer systems,” (Hemisphere Publishing Corporation, New York, 1982).

    Google Scholar 

  21. B. Wunderlich, “Thermal analysis,” (Academic Press, Inc., Boston, 1990).

    Google Scholar 

  22. J. F. Knott, “Fundamentals of fracture toughness,” (Butterworths, London, 1973).

    Google Scholar 

  23. I. W. Gilmour and J. N. Hay, Polymer 18 (1977) 281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, D.D., Gilbert, J.L. & Lautenschlager, E.P. The effect of processing temperature and time on the structure and fracture characteristics of self-reinforced composite poly(methyl methacrylate). Journal of Materials Science: Materials in Medicine 10, 503–512 (1999). https://doi.org/10.1023/A:1008909311523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008909311523

Keywords

Navigation