Skip to main content
Log in

The Midbrain Dopaminergic System: Anatomy and Genetic Variation in Dopamine Neuron Number of Inbred Mouse Strains

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The mesotelencephalic dopamine system is genetically variable and affects motor behavior, motivation, and learning. Here we examine the genetic variation of mesencephalic DA neuron number in a quasi-congenic RQI mouse strain and its background partner and in a recombinant inbred strain with different levels of mesencephalic tyrosine hydroxylase activity (TH/MES). We used B6.Cb4i5-α6/Vad, C57BL/6By, and CXBI, which are known to express high, intermediate, and low levels of TH/MES, respectively. Unbiased stereological sampling with optical disector counting methods were employed to estimate the number of TH-positive neurons in the A8-A9-A10 cell groups. Morphometric studies on the mesencephalic dopamine cell groups indicated that male mice of the B6.Cb4i5-α6/Vad strain were endowed with a significantly lower number of TH-positive cells than CXBI mice. In all strains studied, the right retrorubral field (A8 area) had a higher number of dopamine neurons compared to the left A8 area. The results suggest an inverse relationship between TH/MES and number of dopamine neurons in the A9-A10 cell groups and significant lateral asymmetry in the A8 cell group. A detailed anatomical atlas of the mesencephalic A8-A9-A10 dopaminergic cell groups in the mouse is also presented to facilitate the assignment of TH-positive neurons to specific cell groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arts, M. P., andBemelmans, F. F., andCools, A. R. (1998). Role of the retrorubral nucleus in striatally elicited orofacial dyskinesia in cats: Effects of muscimol and bicuculline. Psychopharmacology (Berlin) 140: 150-156.

    Google Scholar 

  • Bailey, D. W. (1981). Strategic uses of recombinant inbred and congenic strains in behavior genetics research. In Gershon, E. S.,Matthysse, S.,Braekefield, X. O., andCiaranello, R. D. (eds.), Genetic Research Strategies for Psychobiology and Psychiatry, Boxwood Press, Pacific Grove, CA, pp. 189-198.

    Google Scholar 

  • Baker, H.,Joh, T. H., andReis, D. J. (1980). Genetic control of number of midbrain dopamine-neurons in inbred strains of mice: Relationship to size and neuronal density of striatum. Proc. Natl. Acad. Sci. USA 77: 4369-4373.

    Google Scholar 

  • Baker, H.,Joh, T. H., andReis, D. J. (1982). Time of appearance during development of differences in nigrostriatal tyrosine hydroxylase activity in two inbred mouse strains. Brain Res. 256: 157-165.

    Google Scholar 

  • Baving, L.,Laucht, M., andSchmidt, M. H. (1999). Atypical frontal brain activation in ADHD: Preschool and elementary school boys and girls. J. Am. Acad. Child Adolesc. Psychiatry 38: 1363-1371.

    Google Scholar 

  • Beninger, R. J. (1983). The role of dopamine in locomotor activity and learning. Brain Res. 287: 173-196.

    Google Scholar 

  • Brodie, M. S., andAppel, S. B. (2000). Dopaminergic neurons in the ventral tegmental area of C57BL/6J and DBA/2J mice differ in sensitivity to ethanol excitation. Alcohol Clin. Exp. Res. 24: 1120-1124.

    Google Scholar 

  • Ciaranello, R. D., andBoehme, R. E. (1981). Biochemical genetics of neurotransmitter enzymes and receptors: Relationships to schizophrenia and other major psychiatric disorders. Clin. Genet. 19: 358-372.

    Google Scholar 

  • Ciaranello, R. D.,Barchas, R.,Kessler, S., andBarchas, J. D. (1972). Catecholamines: Strain differences in biosynthetic enzyme activity in mice. Life Sci. 11: 565-572.

    Google Scholar 

  • Dahlstrom, A., andFuxe, K. (1964). Localization of monoamines in the lower brain stem. Experientia 20: 398-399.

    Google Scholar 

  • Daszuta, A., andPortalier, P. (1985). Distribution and quantification of 5-HT nerve cell bodies in the nucleus raphe dorsalis area of C57BL and BALBc mice. Relationship between anatomy and biochemistry. Brain Res. 360: 58-64.

    Google Scholar 

  • Demant, P., andHart, A. A. (1986). Recombinant congenic strains-A new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24: 416-422.

    Google Scholar 

  • de Silva, H. R.,Khan, N. L., andWood, N. W. (2000). The genetics of Parkinson' disease. Curr. Opin. Genet. Dev. 10: 292-298.

    Google Scholar 

  • Deutch, A. Y.,Goldstein, M.,Baldino, F., Jr., andRoth, R. H. (1988). Telencephalic projections of the A8 dopamine cell group. Ann. N.Y. Acad. Sci. 537: 27-50.

    Google Scholar 

  • Dikeos, D. G.,Papadimitriou, G. N.,Avramopoulos, D.,Karadima, G.,Daskalopoulou, E. G.,Souery, D.,Mendlewicz, J.,Vassilopoulos, D., andStefanis, C. N. (1999). Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder. Psychiatr. Genet. 9: 189-195.

    Google Scholar 

  • Duaux, E.,Krebs, M. O.,Loo, H., andPoirier, M. F. (2000). Genetic vulnerability to drug abuse. Eur. Psychiatry 15: 109-114.

    Google Scholar 

  • Ebstein, R. P.,Macciardi, F.,Heresco-Levi, U.,Serretti, A.,Blaine, D.,Verga, M.,Nebamov, L.,Gur, E.,Belmaker, R. H.,Avnon, M., andLerer, B. (1997). Evidence for an association between the dopamine D3 receptor gene DRD3 and schizophrenia. Hum. Hered. 47: 6-16.

    Google Scholar 

  • Faraone, S. V., andBiederman, J. (1998). Neurobiology of attentiondeficit hyperactivity disorder. Biol. Psychiatry 44: 951-958.

    Google Scholar 

  • Franklin, K. B. J., andPaxinos, G. (1997). The Mouse Brain in Stereotactic Coordinates, Academic Press, New York.

    Google Scholar 

  • Gasbarri, A.,Packard, M. G.,Sulli, A.,Pacitti, C.,Innocenzi, R., andPerciavalle, V. (1996). The projections of the retrorubral field A8 to the hippocampal formation in the rat. Exp. Brain Res. 112: 244-252.

    Google Scholar 

  • Gasbarri, A.,Sulli, A., andPackard, M. G. (1997). The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 21: 1-22.

    Google Scholar 

  • German, D. C., andManaye, K. F. (1993). Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J. Comp. Neurol. 331: 297-309.

    Google Scholar 

  • German, D. C.,McDermott, K. L.,Sanghera, M. K.,Schlusselberg, D. S.,Smith, W. K.,Woodward, D. J.,Speciale, S. G., andSaper, C. B. (1983). Three-dimensional reconstruction of dopamine neurons in the mouse: Strain differences in regional cell densities and pharmacology. Soc. Neurosci. Abstr. 9: 1150.

    Google Scholar 

  • Giolli, R. A.,Blanks, R. H.,Torigoe, Y., andWilliams, D. D. (1985). Projections of medial terminal accessory optic nucleus, ventral tegmental nuclei, and substantia nigra of rabbit and rat as studied by retrograde axonal transport of horseradish peroxidase. J. Comp. Neurol. 232: 99-116.

    Google Scholar 

  • Glick, S. D. (1985). Heritable differences in turning behavior of rats. Life Sci. 36: 499-503.

    Google Scholar 

  • Gonzalez-Hernandez, T., andRodriguez, M. (2000). Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J. Comp. Neurol. 421: 107-135.

    Google Scholar 

  • Halliday, G. M., andTork, I. (1986). Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J. Comp. Neurol. 252: 423-445.

    Google Scholar 

  • Harris, H. W., andNestler, E. J. (1996). Immunohistochemical studies of mesolimbic dopaminergic neurons in Fischer 344 and Lewis rats. Brain Res. 706: 1-12.

    Google Scholar 

  • Hitzemann, B.,Dains, K.,Kanes, S., andHitzemann, R. (1994). Further studies on the relationship between dopamine cell density and haloperidol-induced catalepsy. J. Pharmacol. Exp. Ther. 271: 969-976.

    Google Scholar 

  • Hitzemann, R.,Qian, Y., andHitzemann, B. (1993). Dopamine and acetylcholine cell density in the neuroleptic responsive (NR) and neuroleptic non-responsive (NNR) lines of mice. J. Pharmacol. Exp. Ther. 266: 431-438.

    Google Scholar 

  • Hornykiewicz, O. (1979). Brain dopamine in Parkinson' Disease and other neurological disturbances. In Horn, A. S.,Dorf, J., andWesterink, B. H. C. (eds.), The Neurobiology of Dopamine, Academic Press, London, pp. 633-654.

    Google Scholar 

  • Kessler, S.,Ciaranello, R. D.,Shire, J. G. M., andBarchas, J. D. (1971). Genetic variation in catecholamine synthesizing enzyme activities. Genetics 68: s33.

    Google Scholar 

  • Kizer, J. S.,Palkovits, M., andBrownstein, M. J. (1976). The projections of the A8, A9 and A10 dopaminergic cell bodies: evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res. 108: 363-370.

    Google Scholar 

  • Koob, G. F. (1999). The role of the striatopallidal and extended amygdala systems in drug addiction. Ann. N.Y. Acad. Sci. 877: 445-460.

    Google Scholar 

  • Kooistra, C. A., andHeilman, K. M. (1988). Motor dominance and lateral asymmetry of the globus pallidus. Neurology 38: 388-390.

    Google Scholar 

  • Marcel, D.,Raison, S.,Bezin, L.,Pujol, J. F., andWeissmann, D. (1998). Plasticity of tyrosine hydroxylase gene expression within BALB/C and C57Black/6 mouse locus coeruleus. Neurosci. Lett. 242: 77-80.

    Google Scholar 

  • Mattiace, L. A.,Baring, M. D.,Manaye, K. F.,Mihailoff, G. A., andGerman, D. C. (1989). Mesostriatal projections in BALB/c and CBA mice: A quantitative retrograde neuronanatomical tracing study. Brain Res. Bull. 23: 61-68.

    Google Scholar 

  • McRitchie, D. A.,Cartwright, H.,Pond, S. M.,van der Schyf, C. J.,Castagnoli, N., Jr.,van der Nest, D. G., andHalliday, G. M. (1998). The midbrain dopaminergic cell groups in the baboon Papio ursinus. Brain Res. Bull. 47: 611-623.

    Google Scholar 

  • Meloni, R.,Laurent, C.,Campion, D.,Ben Hadjali, B.,Thibaut, F.,Dollfus, S.,Petit, M.,Samolyk, D.,Martinez, M.,Poirier, M. F., et al. (1995). A rare allele of a microsatellite located in the tyrosine hydroxylase gene found in schizophrenic patients. C.R. Acad. Sci. Ser. Iii Sci. Vie 318: 803-809.

    Google Scholar 

  • Meltzer, H. Y., andStahl, S. M. (1976). The dopamine hypothesis of schizophrenia: A review. Schizophr. Bull. 2: 19-76.

    Google Scholar 

  • Morino, H.,Kawarai, T.,Izumi, Y.,Kazuta, T.,Oda, M.,Komure, O.,Udaka, F.,Kameyama, M.,Nakamura, S., andKawakami, H. (2000). A single nucleotide polymorphism of dopamine transporter gene is associated with Parkinson' disease. Ann. Neurol. 47: 528-531.

    Google Scholar 

  • Muthane, U.,Ramsay, K. A.,Jiang, H.,Jackson-Lewis, V.,Donaldson, D.,Fernando, S.,Ferreira, M., andPrzedborski, S. (1994). Differences in nigral neuron number and sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57/bl and CD-1 mice. Exp. Neurol. 126: 195-204.

    Google Scholar 

  • Nigg, J. T.,Swanson, J. M., andHinshaw, S. P. (1997). Covert visual spatial attention in boys with attention deficit hyperactivity disorder: Lateral effects, methylphenidate response and results for parents. Neuropsychologia 35: 165-176.

    Google Scholar 

  • Noble, E. P. (2000). Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: A review. Eur. Psychiatry 15: 79-89.

    Google Scholar 

  • Paxinos, G., andWatson, C. (1998). The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego, CA.

    Google Scholar 

  • Pearson, J.,Halliday, G.,Sakamoto, N., andMichel, J.-P. (1990). Catecholaminergic Neurons, In Paxinos, G. (ed.), The Human Nervous System, CA, pp. 1023-1049. Academic Press, San Diego.

    Google Scholar 

  • Phillipson, O. T. (1979). The cytoarchitecture of the interfascicular nucleus and ventral tegmental area of Tsai in the rat. J. Comp. Neurol. 187: 85-98.

    Google Scholar 

  • Polymeropoulos, M. H.,Lavedan, C.,Leroy, E.,Ide, S. E.,Dehejia, A.,Dutra, A.,Pike, B.,Root, H.,Rubenstein, J.,Boyer, R.,Stenroos, E. S.,Chandrasekharappa, S.,Athanassiadou, A.,Papapetropoulos, T.,Johnson, W. G.,Lazzarini, A. M.,Duvoisin, R. C.,Di Iorio, G.,Golbe, L. I., andNussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson' disease. Science 276: 2045-2047.

    Google Scholar 

  • Reis, D. J.,Baker, H.,Fink, J. S., andJoh, T. H. (1981). A genetic control of the number of dopamine neurons in mouse brain: Its relationship to brain morphology, chemistry, and behavior. In Gerson, E. S.,Matthysse, S.,Breakefield, X. O., andCiaranello, R. D. (eds.), Genetic Research Strategies for Psychobiology and Psychiatry, Boxwood Press, Pacific Grove, CA, pp. 215-229.

    Google Scholar 

  • Reis, D. J.,Fink, J. S., andBaker, H. (1983). Genetic control of the number of dopamine neurones in the brain: Relationship to behavior and responses to psychoactive drugs. In Kety, S. S.,Rowland, L. P.,Sidman, R. L., and Matthysse, S. W. (eds.), Genetics of Neurological and Psychiatric Disorders, Raven Press, New York, pp. 55-75.

    Google Scholar 

  • Richter, A.,Ebert, U.,Nobrega, J. N.,Vallbacka, J. J.,Fedrowitz, M., andLoscher, W. (1999). Immunohistochemical and neurochemical studies on nigral and striatal functions in the circling (ci) rat, a genetic animal model with spontaneous rotational behavior. Neuroscience 89: 461-471.

    Google Scholar 

  • Ross, R. A.,Judd, A. B.,Pickel, V. M.,Joh, T. H., andReis, D. J. (1976). Strain-dependent variations in number of midbrain dopaminergic neurones. Nature 264: 654-656.

    Google Scholar 

  • Serretti, A.,Macciardi, F.,Catalano, M.,Bellodi, L., andSmeraldi, E. (1999). Genetic variants of dopamine receptor D4 and psychopathology. Schizophr. Bull. 25: 609-618.

    Google Scholar 

  • Shimura, H.,Hattori, N.,Kubo, S.,Mizuno, Y.,Asakawa, S.,Minoshima, S.,Shimizu, N.,Iwai, K.,Chiba, T.,Tanaka, K., andSuzuki, T. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25: 302-305.

    Google Scholar 

  • Swanson, J. M. (2000). Dopamine-transporter density in patients with ADHD [letter; comment]. Lancet 355: 1461-1462.

    Google Scholar 

  • Swanson, J. M.,Flodman, P.,Kennedy, J.,Spence, M. A.,Moyzis, R.,Schuck, S.,Murias, M.,Moriarity, J.,Barr, C.,Smith, M., andPosner, M. (2000). Dopamine genes and ADHD. Neurosci. Biobehav. Rev. 24: 21-25.

    Google Scholar 

  • Swanson, L. W. (1982). The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9: 321-353.

    Google Scholar 

  • Taber, E. (1961). The cytoarchitecture of the brainstem of the cat. I. Brainstem nuclei of the cat. J. Comp. Neurol. 116: 27-69.

    Google Scholar 

  • Thibaut, F.,Ribeyre, J. M.,Dourmap, N.,Meloni, R.,Laurent, C.,Campion, D.,Menard, J. F.,Dollfus, S.,Mallet, J., andPetit, M. (1997). Association of DNA polymorphism in the first intron of the tyrosine hydroxylase gene with disturbances of the catecholaminergic system in schizophrenia. Schizophr. Res. 23: 259-264.

    Google Scholar 

  • Vadasz, C. (1990). Development of congenic recombinant inbred neurological animal model lines. Mouse Genome 88: 16-18.

    Google Scholar 

  • Vadasz, C.,Baker, H.,Joh, T. H.,Lajtha, A., andReis, D. J. (1982). The inheritance and genetic correlation of tyrosine hydroxylase activities in the substantia nigra and corpus striatum in the CXB recombinant inbred mouse strains. Brain Res. 234: 1-9.

    Google Scholar 

  • Vadasz, C.,Baker, H.,Fink, S. J., andReis, D. J. (1985). Genetic effects and sexual dimorphism in tyrosine hydroxylase activity in two mouse strains and their reciprocal F1 hybrids. J. Neurogenet. 2: 219-230

    Google Scholar 

  • Vadasz, C.,Sziraki, I.,Murthy, L. R., andLajtha, A. (1986). Genetic determination of striatal tyrosine hydroxylase activity in mice. Neurochem. Res. 11: 1139-1149.

    Google Scholar 

  • Vadasz, C.,Sziraki, I.,Murthy, L. R.,Vadasz, I.,Badalamenti, A. F.,Kobor, G., andLajtha, A. (1987). Genetic determination of mesencephalic tyrosine hydroxylase activity in the mouse. J. Neurogenet. 4: 241-252.

    Google Scholar 

  • Vadasz, C.,Laszlovszky, I., andFleischer, A. (1994a). Dopamine system-specific QTL introgressed lines: Response to cocaine. Mouse Genome 92: 699-701.

    Google Scholar 

  • Vadasz, C.,Sziraki, I.,Murthy, L. R.,Sasvari-Szekely, M.,Kabai, P.,Laszlovszky, I.,Fleischer, A.,Juhasz, B., andZahorchak, R. (1994b). Transfer of brain dopamine system-specific quantitative trait loci onto a C57BL/6ByJ background. Mammal. Genome 5: 735-737.

    Google Scholar 

  • Vadasz, C.,Sziraki, I.,Sasvari, M.,Kabai, P.,Laszlovszky, I.,Juhasz, B., andZahorchak, R. (1996). Genomic characterization of two introgression strains (B6.Cb4i5) for the analysis of QTLs. Mammal. Genome 7: 545-548.

    Google Scholar 

  • Vadasz, C.,Sziraki, I.,Sasvari, M.,Kabai, P.,Murthy, L. R.,Saito, M., andLaszlovszky, I. (1998). Analysis of the mesotelencephalic dopamine system by quantitative-trait locus introgression. Neurochem. Res. 23: 1337-1354.

    Google Scholar 

  • Waller, S. B.,Ingram, D. K.,Reynolds, M. A., andLondon, E. D. (1983). Age and strain comparisons of neurotransmitter synthetic enzyme activities in the mouse. J. Neurochem. 41: 1421-1428.

    Google Scholar 

  • West, M. J.,Slomianka, L., andGundersen, H. J. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat. Rec. 231: 482-497.

    Google Scholar 

  • West, M. J.,Ostergaard, K.,Andreassen, O. A., andFinsen, B. (1996). Estimation of the number of somatostatin neurons in the striatum: An in situ hybridization study using the optical fractionator method. J. Comp. Neurol. 370: 11-22.

    Google Scholar 

  • Williams, R. W.,Strom, R. C., andGoldowitz, D. (1998). Natural variation in neuron number in mice is linked to a major quantitative trait locus on Chr 11. J. Neurosci. 18: 138-146.

    Google Scholar 

  • Williams, S. M., andGoldman-Rakic, P. S. (1998). Widespread origin of the primate mesofrontal dopamine system. Cereb. Cortex 8: 321-345.

    Google Scholar 

  • Wimer, R. E.,Wimer, C. C.,Vaughn, J. E.,Barber, R. P.,Balvanz, B. A., andChernow, C. R. (1978). The genetic organization of neuron number in the granule cell layer of the area dentata in house mice. Brain. Res. 157: 105-122.

    Google Scholar 

  • Yamaguchi, S., andKobayashi, S. (1998). Contributions of the dopaminergic system to voluntary and automatic orienting of visuospatial attention. J. Neurosci. 18: 1869-1878.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaborszky, L., Vadasz, C. The Midbrain Dopaminergic System: Anatomy and Genetic Variation in Dopamine Neuron Number of Inbred Mouse Strains. Behav Genet 31, 47–59 (2001). https://doi.org/10.1023/A:1010257808945

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010257808945

Navigation