Skip to main content
Log in

Allopurinol Enhances Adenine Nucleotide Levels and Improves Myocardial Function in Isolated Hypoxic Rat Heart

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Allopurinol, a competitive inhibitor of xanthine oxidase, was found to have a protective effect on ischemic myocardium. Its mechanism of action is still controversial. We used Langendorff isolated rat heart preparation to test the hypothesis that allopurinol could maintain a level of the adenine nucleotide pool (ATP, ADP, and AMP) that would protect and improve the functional activity of the heart during a period of hypoxia. Hearts were initially perfused for 30 min until steady state was attained. This was followed by 20 min of experimental perfusion divided into 5 min of control perfusion followed by 15 min of hypoxic perfusion with or without allopurinol in the perfusate. Hearts were quick-frozen and enzymatically analyzed for adenine nucleotides and creatine phosphate at the end of the hypoxic period. Left ventricular pressure, heart rate, and coronary flow were measured in all preparations. Allopurinol (0.1 mM) treated hearts had greater levels of ATP (12.3 ± 0.8 vs. 9.3 ± 0.8 µmol/g dry weight; p < 0.01). This improvement occurred in the presence as well as the absence of glucose. Total adenine nucleotides improved from 17 ± 1 to 20.3 ± 2.4 µmol/g dry weight (p < 0.01). This improvement also occurred in the presence as well as in the absence of glucose in the perfusate. It also improved cell energy state significantly in the presence as well as the absence of glucose. There was insignificant change in creatine phosphate. Allopurinol improved left ventricular pressure from 38 ± 7% to 55 ± 9% (p < 0.002) in the presence of glucose and from 8 ± 3% to 27 ± 6.3% (p < 0.001) in the absence of glucose. Coronary flow improved from 110 ± 5% to 120 ± 8% (p < 0.04) in the presence of glucose. These results support the suggestion that allopurinol at 0.1 mM exerts its protective effect on rat heart during hypoxia by enhancing the adenine nucleotide pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Braasch, W., Gudbjarnason, S., Puri, P., Rabens, K., and Bing, R. (1968) Circ. Res., 23, 429.

    Google Scholar 

  2. Bruvand, H., Wesrby, J., Lekven, J., and Grong, K. (1992) Scand. J. Lab. Invest., 52, 623–630.

    Google Scholar 

  3. Imai, S. A., RiLey, L., and Berne, R. M. (1964) Circ. Res., 15, 443–450.

    Google Scholar 

  4. Jennings, R. B., Reimer, K. A., Hill, M. I., and Mayer, S. E. (1981) Circ. Res., 49, 892–900.

    Google Scholar 

  5. Jenninges, R., Schaper, J., Hill, M., Steenberger, Jr., and Reimer, K. (1985) Circ. Res., 56, 262–278.

    Google Scholar 

  6. Schrader, J., and Gerlach, E. (1976) Pflugers Arch., 367, 129.

    Google Scholar 

  7. Edwards, N. L., Rocker, D., Airozo, D., and Fox, I. H. (1981) J. Lab. Clin. Med., 98, 673–683.

    Google Scholar 

  8. Roy, R., Chambers, D., McCord, J., and Downey, J. (1985) Fed. Proc., 43, 323.

    Google Scholar 

  9. Zoref-Shani, E., Bromberg, Y., Shirin, C., Sidi, Y., and Aperling, O. J. (1992) J. Mol. Cell. Cardiol., 24, 183–189.

    Google Scholar 

  10. Mc Cord, J. M. (1984) in Therapeutics Approaches to Infract Size Limitation (Hearse, D. J., and Yellon, D. M., eds.) Raven Press, N.Y., pp. 163–218.

    Google Scholar 

  11. Lehninger, A. L., Nelson, D. L., and Cox, M. M. (eds.) (1993) Principles of Biochemistry, Worth Publishers, N.Y., pp. 729, 1993.

    Google Scholar 

  12. Zimmer, H. G., Rendelenburg, T., Kammermeier, H., and Gerlach, E. (1973) Circ. Res., 32, 635–642.

    Google Scholar 

  13. Namm, D. H. (1973) Circ. Res., 33, 686–695.

    Google Scholar 

  14. Harmsen, E. E., de Tombe, P. P., Willem, J., Jong, D. E., and Achterberg, P. (1987) Am. J. Physiol., 246, 511–515.

    Google Scholar 

  15. Arnold, W. L., Dewall, R. A., Kezdi, P., and Zwart, H. H. (1980) Am. Heart J., 99, 614–624.

    Google Scholar 

  16. Castelli, P., Condemi, A. M., Brambillasca, C., Fundaro, P., Lemma, M., Vanelli, P., Santoli, C., Gatti, S., and Riva, E. (1995) J. Cardiovasc. Pharmacol., 25, 119–125.

    Google Scholar 

  17. DeWall, R. A., Vasko, K. A., Stanley, E. L., and Kezdi, P. (1971) Am. Heart J., 82, 362–370.

    Google Scholar 

  18. Godin, D., and Bhimji, S. (1987) Biochem. Pharmacol., 36, 2101–2107.

    Google Scholar 

  19. Hopson, S. B., Lust, R. M., Sun, Y. S., Zeri, R. S., Morrison, R. F., Otaki, M., and Chitwood, W. R. (1995) J. Natl. Med. Ass., 87, 480–484.

    Google Scholar 

  20. Shadid, M., van Bel, F., Steendijk, P., Dorrepaal, C. A., Moison, R., van der Velde, E. T., and Baan, J. (1999) Basic. Res. Cardiol., 94, 23–30.

    Google Scholar 

  21. Stewart, J. R., Stephen, C. L., Loughlin, V., Hess, M., and Greenfield, L. J. (1985) J. Thorac. Cardiovasc. Surg., 90, 68–72.

    Google Scholar 

  22. Das, D. K., Engelman, R., Clement, R., Otani, H., Prasad, R., and Rao, P. (1987) Biochem. Biophys. Res. Commun., 148, 314–319.

    Google Scholar 

  23. Manning, A., Coltart, D., and Hearse, D. (1984) Circ. Res., 55, 545–548.

    Google Scholar 

  24. Matsuki, T., Shirato, C., Cohen, M., and Downey, J. (1990) Can. J. Cardiol., 6, 123–129.

    Google Scholar 

  25. Werns, S., Shea, M., Mitsos, S., et al. (1986) Circulation, 73, 518–524.

    Google Scholar 

  26. Lasley, R. D., Ely, S. W., Berne, R. M., and Mentzer, R. M. (1988) J. Clin. Invest., 81, 16–20.

    Google Scholar 

  27. Pechan, I., Cornak, V., Rendekova, V., Mrazova, J., and Zimmer, H. G. (1991) Bratisl. Lek. Listy, 92, 323–329.

    Google Scholar 

  28. Pisarenko, O. I., Lakomkin, V. L., Studneva, I. M., Timoshin, A. A., Kuzmin, A. I., Ruuge, E. K., and Kapelko, V. I. (1994) Biochem. Med. Metab. Biol., 51, 16–26.

    Google Scholar 

  29. Bergmeyer, H. U. (1985) Meth. Enzymol. Anal., 7, pp. 347, 365, 507.

    Google Scholar 

  30. Atkinson, D. E. (1968) Biochemistry, 7, 4030–4034.

    Google Scholar 

  31. Lindsay, W. G., Toledo-Peregyra, L. H., Foker, J. E., and Varco, R. (1975) Surg. Forum, 26, 259–260.

    Google Scholar 

  32. Headrick, J. P., Armiger, L. C., and Willis, R. J. (1990) J. Mol. Cell. Cardiol., 22, 1107–1116.

    Google Scholar 

  33. Sakakibara, Y. (1993) Jp. Circ. J., 57, 809–816.

    Google Scholar 

  34. Chambers, D. E., Parks, D. A., Patterson, G., Roy, R., McCord, J. M., Yosida, S., Parmley, L. F., and Downey, J. M. (1985) J. Mol. Cell. Cardiol., 17, 145–152.

    Google Scholar 

  35. Berne, R. M. (1974) Am. J. Physiol., 204, 317–322.

    Google Scholar 

  36. Michael, J. P., and Parenteau, G. (1990) Arch. Biochem. Biophys., 295, 35–41.

    Google Scholar 

  37. Schopf, G., Rumpod, H., and Muller, M. (1986) Adv. Exp. Med. Biol., 195, 511–515.

    Google Scholar 

  38. Van Jaarveld, H., Barnard, H. C., Barnard, S. P., Maartens, J. J., and Potgieter, G. M. (1989) Enzyme, 42, 136–144.

    Google Scholar 

  39. Nakano, M., Sugano, M., Terasaki, M., et al. (1992) Res. Exp. Med., 192, 389–399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khatib, S.Y., Farah, H. & El-Migdadi, F. Allopurinol Enhances Adenine Nucleotide Levels and Improves Myocardial Function in Isolated Hypoxic Rat Heart. Biochemistry (Moscow) 66, 328–333 (2001). https://doi.org/10.1023/A:1010264216357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010264216357

Navigation