Skip to main content
Log in

Microwave Aquametry: An Effective Tool for Nondestructive Moisture Sensing

  • Published:
Subsurface Sensing Technologies and Applications Aims and scope Submit manuscript

Abstract

Moisture content in solid, granular and pulverized materials is one of the most important material parameters during production, trading, processing and storage of those materials. Recent advances in application of microwave measuring techniques to nondestructive determination of moisture content are reviewed, with a special emphasis being put on a newly developed concept of a density-independent calibration. It is concluded that those techniques provide accurate, fast and nondestructive means for moisture content testing in such materials and satisfy requirements of automated industrial processes, scientific laboratories, material mass storage, personnel safety and long-term transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briggs, L.J., 1908, An electrical resistance method for the rapid determination of the moisture content of grain: Bureau Plant Industry Circular, no. 20, U.S. Dept. Agric.

  2. Watson, A., 1965, Measurement and control of moisture content by microwave absorption, in Wexler, A. (ed.), Humidity and Moisture, v. 4, P.N. Winn (ed.), p. 87-93.

  3. Kraszewski, A., 1973, Microwave instrumentation for moisture content measurement: J. Microwave Power, v. 8, no. 3-4, p. 323-336.

    Google Scholar 

  4. Benzar, V.K., 1974, Microwave Techniques of Moisture Content Measurements (in Russian), Minsk, USSR, Izdat. Vysheyshaya Shkola (University Publishers), 349 pp. 5.

    Google Scholar 

  5. Kraszewski, A. (ed.), 1980, Microwave aquametry: J. Microwave Power, v. 15, no. 4, p. 207-310.

  6. Pyper, J.W., Buettner, H.M., Cerjan, C.J., Hallam, J.S., and King, R.J., 1985, The measurement of bound and free moisture in organic materials by microwave methods: ISA Internatl. Symposium on Moisture and Humidity, Washington, DC, p. 909-917.

  7. Kupfer, K., (ed.), 1997, Material Moisture Measurements (in German), Renningen-Malmsheim, Germany, Expert Verlag, 394 pp.

    Google Scholar 

  8. Kupfer, K. (ed.), 1997, 9th Meeting on Moisture Measurement (in German, 9 Feuchtetag), Weimar, Germany, MFPA University of Weimar, 354 pp.

    Google Scholar 

  9. Kraszewski A., (ed.), 1996, Microwave Aquametry, Piscataway, NJ, IEEE Press, 484 pp.

    Google Scholar 

  10. Kraszewski, A. (ed.), 1996, Workshop on Electromagnetic Wave Interaction with Water and Moist Substances. Summaries. IEEE Internatl. Microwave Symp., San Francisco, CA, 145 pp.

  11. Kraszewski, A. and Lawrence, K.C. (eds), 1999, Collection of Papers for the Third Workshop on Electromagnetic Wave Interaction with Water and Moist Substances, U.S. Dept. Agric., Athens, GA, 145 pp.

    Google Scholar 

  12. Kupfer, K., Kraszewski, A., and Knoechel, R. (eds), 2000, Sensors Update, v. 7: RF and Microwave Sensing of Moist Materials, Wiley-VCH Verlag GmbH, Weinheim, Germany, 444 pp.

  13. Kupfer, K. (ed.), 2001, Proceedings of the Fourth Internatl. Conference on Electromagnetic Wave Interaction with Water and Moist Substances, University of Weimar, Weimar, Germany, 535 pp.

    Google Scholar 

  14. Trabelsi, S., Kraszewski, A.W., and Nelson, S.O., 2000, Phase-shift ambiguity in microwave dielectric properties measurements: IEEE Trans. Instrum. Meas., v. 49, no. 1, p. 56-60.

    Google Scholar 

  15. Nelson, S.O., 1981, Review of factors influencing the dielectric properties of cereal grains: Cereal Chem., v. 58, no. 6, p. 487-492.

    Google Scholar 

  16. Kraszewski, A., Trabelsi, S., and Nelson, S.O., 1997, Moisture content determination in grain by measuring microwave parameters: Meas. Sci. Technol., v. 8, no. 8, p. 857-863. Also Addendum, ibidem, v. 9, no. 3, p. 543–544, 1998.

    Google Scholar 

  17. Bartley, P.G., McClendon, R.W., Nelson, S.O., and Trabelsi, S., 1998, Determining moisture content of wheat with an artificial neural network from microwave transmission measurements: IEEE Trans. Instrum. and Meas., v. 47, no. 2, p. 123-125.

    Google Scholar 

  18. Kraszewski, A.W., Trabelsi, S., and Nelson, S.O., 1996, Wheat permittivity measurement in free space: J. Microwave Power and Electromag. Energy, v. 31, no. 3, p. 135-141.

    Google Scholar 

  19. Archibald, D.D., Trabelsi, S., Kraszewski, A.W., and Nelson, S.O., 1998, Regression analysis of microwave spectra for temperature-compensated and density-independent determination of wheat moisture content: Appl. Spectroscopy, v. 52, no. 11, p. 1435-1446.

    Google Scholar 

  20. Ben Slima, M., Morawski, R.Z., Kraszewski, A.W., Barwicz, A., and Nelson, S.O., 1999, Calibration of a microwave system for measuring grain moisture content: IEEE Trans. Instrum. Meas., v. 48, no. 3, p. 778-782.

    Google Scholar 

  21. Kraszewski, A.W., Trabelsi, S., and Nelson, S.O., 1998, Simple grain moisture content determination from microwave measurements: Trans. Am. Soc. Agriculture Engrs., v. 41, no. 1, p. 129-134.

    Google Scholar 

  22. Kraszewski, A. and Kulinski, S., 1976, An improved microwave method of moisture content measurement and control: IEEE Trans. Industr. Electron. and Control Instrum., v. IECI-23, no. 4, p. 364-370.

    Google Scholar 

  23. Meyer, W. and Schilz, W., 1980, A microwave method of density independent determination of moisture content in solids: J. Phys. D, v. 13, p. 1823-1830.

    Google Scholar 

  24. Kraszewski, A., Trabelsi, S., and Nelson, S.O., 1998, Comparison of density-independent expressions for moisture content determination in wheat at microwave frequencies: J. Agric. Eng. Research, v. 71, p. 227-237.

    Google Scholar 

  25. Trabelsi, S., Kraszewski, A.W., and Nelson, S.O., 1997, Simultaneous determination of density and water content of particulate materials by microwave sensors: Electronics Letters, v. 33, no. 10, p. 874-876.

    Google Scholar 

  26. Trabelsi, S., Kraszewski, A.W., and Nelson, S.O., 1999, Unified calibration method for nondestructive dielectric sensing of moisture content in granular materials: Electronics Letters, v. 35, no. 16, p. 1346-1347.

    Google Scholar 

  27. Trabelsi, S., Kraszewski, A.W., and Nelson, S.O., 2000, Universal microwave moisture sensor for granular materials. Am. Soc. Agriculture Engrs. Paper no. 003061, p. 11.

  28. Pozar, D.M. and Schaubert, D.H. (eds.), 1995, Microstrip antennas, Piscataway, NJ, IEEE Press, 431 pp.

    Google Scholar 

  29. Volgyi, F., 1993, Microstrip antenna array application for microwave heating, Proc. 23rd European Microwave Conf., Madrid, Spain, p. 412-415.

  30. Volgyi, F., 2001, Microstrip sensors used in microwave aquametry, in Proceedings of the Fourth Internatl. Conference on Electromagnetic Wave Interaction with Water and Moist Substances, University of Weimar, Weimar, Germany, [13], p. 135-142.

    Google Scholar 

  31. King, R.J., 1992, Microwave sensors for process control. Part II: Open resonator sensors. Sensors, v. 9, no. 10, p. 25-30.

    Google Scholar 

  32. King, R.J., 2000, On-line industrial applications of microwave moisture sensors. Sensors Update, v. 7: RF and Microwave Sensing of Moist Materials, Wiley-VCH Verlag GmbH, Weinheim, Germany, p. 109-170.

    Google Scholar 

  33. Keam, R.B. and Holdem, J.R., 1997, Permittivity measurement using a coaxial-line conical-tip probe: Electronics Letters, v. 33, no. 5, p. 353-355.

    Google Scholar 

  34. Kim, S.-W., Cho, Y.-S., Huyn, S.-Y., and Kim, S.-Y., 2001, A comparative study on the stability of four different conversion models of the open-ended coaxial probe in Proceedings of the Fourth Internatl. Conference on Electromagnetic Wave Interaction with Water and Moist Substances, University of Weimar, Weimar, Germany, p. 185-192.

  35. Ball, J.A.R., Horsfield, B., Holdem, J.R., Keam, R.B., Holmes, W.S., and Green, A., Cheese curd permittivity and moisture measurement using 6-port reflectometer, Proc. Asia Pacific Microwave Conf., New Delhi, India, v. 2, p. 479-482.

  36. Kraszewski, A.W. and Nelson, S.O., 1996, Moisture content determination in single kernels and seeds with microwave resonant sensors, in Kraszewski, A. (ed.), Microwave Aquametry, Piscataway, NJ, IEEE Press, p. 177-203.

    Google Scholar 

  37. Herrmann, R. and Sikora, J., 1977, Moisture content measuring with microwave resonators, in Kupfer, K. (ed.), Material Moisture Measurements (in German), Renningen-Malmsheim, Germany, Expert Verlag, p. 291-310.

    Google Scholar 

  38. Gallone, G., Lucardesi, P., Martinelli, M., and Rolla, P.A., 1996, A fast and precise method for measurement of the dielectric permittivity at microwave frequencies: J. Microwave Power and EE, v. 31, no. 3, p. 158-164.

    Google Scholar 

  39. Scott, B.N., Cregger, B.B., and Shortes, S.R., 1993, Technology for full-range water-cut measurements, Proc. 25th Offshore Technol. Conf., Houston, TX, p. 279-286.

  40. Jean, B.R., 1996, Guided microwave spectroscopy for on-line moisture measurement of flowable materials, in Kraszewski, A. (ed.), Microwave Aquametry, Piscataway, NJ, IEEE Press, p. 123-126; also in Kraszewski, A. and Lawrence K.C. (eds.), 1999, Collection of Papers for the Third Workshop on Electromagnetic Wave Interaction with Water and Moist Substance, U.S. Dept. Agric., Athens, Georgia, p. 171–184.

    Google Scholar 

  41. Stacheder, M., Koehler, K., and Fundinger, R., 1996, New TDR probes for water content determination in porous media, in Kraszewski, A. (ed.), Microwave Aquametry, Piscataway, NJ, IEEE Press, p. 123-126; also in Kraszewski, A. and Lawrence K.C. (eds.), 1999, Collection of Papers for the Third Workshop on Electromagnetic Wave Interaction with Water and Moist Substance, U.S. Dept. Agric., Athens, Georgia, p. 171–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraszewski, A. Microwave Aquametry: An Effective Tool for Nondestructive Moisture Sensing. Subsurface Sensing Technologies and Applications 2, 347–362 (2001). https://doi.org/10.1023/A:1013212916645

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013212916645

Navigation