Skip to main content
Log in

Tenascin-R associates extracellularly with parvalbumin immunoreactive neurones but is synthesised by another neuronal population in the adult rat cerebral cortex

  • Published:
Journal of Neurocytology

Abstract

The molecular components surrounding a neurone serve as recognition cues for the nerve terminals and glial processes that contact them and the constellations formed by these inputs will therefore be determined by the blend of adhesive and repulsive components therein. Using immunohistochemical methods, we observed that the large extracellular matrix-protein, tenascin-R (Restrictin, J1-160-180, Janusin), associates preferentially with the parvalbumin-positive subpopulation of interneurones within the cerebral cortex. In situ-hybridization indicated that tenascin-R-mRNA was expressed in a subpopulation of nerve cells distinct from that containing parvalbumin, suggesting that this protein's association with the latter is receptor mediated. These nerve cells thus modulate at a distance the composition of the extracellular matrix around parvalbuminneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asher, R. & Bignami, A. (1991) Localization of hyaluronate in primary glial cell cultures derived from newborn rat brain. Experimental Cell Research 195, 410–411.

    Google Scholar 

  • Bartsch, U., Pesheva, P., Raff, M. & Schachner, M. (1993) Expression of janusin (J1–160/180) in the retina and optic nerve of the developing and adult mouse. Glia 9, 57–69.

    PubMed  Google Scholar 

  • Bignami, A., Asher, R., Perides, G. & Rahemtulla, F. (1992) The extracellular matrix of cerebral gray matter: Golgi's pericellular net and Nissl's nervöses Grau revisited. International Journal of Developmental Neuroscience 10, 291–299.

    PubMed  Google Scholar 

  • Black, J. A. & Waxman, S. G. (1988) The perinodal astrocyte. Glia 1, 169–183.

    PubMed  Google Scholar 

  • Brauer, K., Werner, L. & Leibnitz, L. (1982) Perineuronal nets of glia. Journal für Hirnforschung 23, 701–708.

    Google Scholar 

  • BrÜmmendorf, T., Hubert, M., Treubert, U., Leuschner, R., Tarnok, A. & Rathjen, F.G. (1993) The axonal recognition molecule F11 is a multifunctional protein: Specific domains mediate interactions with Ng-CAM and restrictin. Neuron 10, 711–727.

    PubMed  Google Scholar 

  • Celio, M. R. (1986) Parvalbumin in most γ-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231, 995–997.

    PubMed  Google Scholar 

  • Celio, M. R. (1990) Calbindin D-28k and parvalbumin in the rat brain. Neuroscience 35, 375–475.

    PubMed  Google Scholar 

  • Celio, M. R. (1993) Perineuronal nets of extracellular matrix around parvalbumin-containing neurons in the hippocampus. Hippocampus 3, 55–60.

    PubMed  Google Scholar 

  • Celio, M. R., Baier, W., SchÄrer, L., Viragh, P. A. & Gerday, C. (1988) Monoclonal antibodies directed against the calcium-binding protein parvalbumin. Cell Calcium 9, 81–86.

    PubMed  Google Scholar 

  • Celio, M. R. & BlÜmcke, I. (1994) “Perineuronal nets”: A specialized form of extracellular matrix in the adult nervous system. Brain Research Review 19, 128–145.

    Google Scholar 

  • Chomczynski, P. & Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156–159.

    PubMed  Google Scholar 

  • Endo, T., Kobayashi, M., Kobayashi, S. & Onaya, T. (1986) Immunocytochemical and biochemical localization of parvalbumin in the retina. Cell and Tissue Research 243, 213–217.

    PubMed  Google Scholar 

  • Faissner, A. & Kruse, J. (1990) J1/tenascin is a repulsive substrate for central nervous system neurons. Neuron 5, 627–637.

    PubMed  Google Scholar 

  • Faissner, A., Kruse, J., Chiquet-Ehrismann, R., & Mackie, E. (1988) The high molecular weight J1 glycoproteins are immunochemically related to tenascin. Differentiation 37, 104–114.

    PubMed  Google Scholar 

  • Ffrench-Constant, C., Miller, H. R., Kruse, J., Schachner, M. & Raff, M. C. (1986) Molecular specialization of astrocyte processes at nodes of Ranvier in the rat optic nerve. Journal of Cell Biology 102, 844–852.

    PubMed  Google Scholar 

  • Fuss, B., Wintergerst, E. S., Bartsch, U. & Schachner, M. (1993) Molecular characterization and in situ mRNA localization of the neural recognition molecule J1–160–80: A modular structure similar to tenascin. Journal of Cell Biology 120, 1237–1249.

    PubMed  Google Scholar 

  • Gennarini, G., Cibelli, G., Rougon, G., Mattei, M. G. & Goridis, C. (1989) The mouse neuronal cell surface glycoprotein F3: A phosphatidyl inositolanchored member of the immunoglobulin superfamily related to chicken contactin. Journal of Cell Biology 109, 775–788.

    PubMed  Google Scholar 

  • Golgi, C. (1893) Intorno all'origine del quarto nervo cerebrale e una questione isto-fisiologica che a questo argomento si collega. Rendiconti della reale Accademia dei Lincei (7 maggio). Vol. II, pp. 379–389.

  • Golgi, C. (1898) Intorno alle strutture delle cellule nervose. Bollettino della Società medico-chirurgica di Pavia. Seduta del 19 aprile: 1–14.

    Google Scholar 

  • HÄrtig, W., Brauer, K. & BrÜckner, G. (1992) Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. NeuroReport 3, 869–872.

    PubMed  Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Hockfield, S. & McKay, R. D. G. (1984) Monoclonal antibody that identifies subsets of neurons in the central visual system of monkey and cat. Nature 307, 267–269.

    PubMed  Google Scholar 

  • Hockfield, S. & McKay, R. D. G. (1983) A surface antigen expressed by a subset of neurons in the vertebrate central nervous system. Proceedings of the Natural Academy of Sciences USA 80, 5758–5761.

    Google Scholar 

  • Kawaguchi, Y., Katsumaru, H., Kosaka, T., Heizmann, C. W. & Hama, K. (1993) Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Research 416, 369–374.

    Google Scholar 

  • Kawaguchi, Y. & Kubota, Y. (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin-immunoreactive and calbindin D-28k-immunoreactive neurons in layer V of rat frontal cortex. Journal of Neurophysiology 70, 387–396.

    PubMed  Google Scholar 

  • Kosaka, T. & Heizmann, C. W. (1989a) Selective staining of a population of parvalbumin-containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for terminal N-acetylgalactosamine. Brain Research 483, 158–163.

    PubMed  Google Scholar 

  • Kosaka, T., Heizmann, C. W. & Barnstable, C. J. (1989b) Monoclonal antibody VC1.1 selectively stains a population of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat cerebral cortex. Experimental Brain Research 78, 43–50.

    Google Scholar 

  • Kosaka, T., Heizmann, C. W. & Fujita, S. C. (1992a) Monoclonal antibody 473 selectively stains a population of GABA-ergic neurons containing the calcium-binding protein parvalbumin in the rat cerebral cortex. Experimental Brain Research 89, 109–114.

    Google Scholar 

  • Kosaka, T., Heizmann, C. W. & Fujita, S. C. (1992b) Monoclonal antibody 473 selectively stains a population of GABA-ergic neurons containing the calcium-binding protein parvalbumin in the rat cerebral cortex. Experimental Brain Research 89, 109–114.

    Google Scholar 

  • Kosaka, T., Isogai, K., Barnstable, C. J. & Heizmann, C. W. (1990) Monoclonal antibody HNK-1 selectively stains a subpopulation of GABAergic neurons containing the calcium-binding protein Tenascin-R associates with parvalbumin-interneurones 301 parvalbumin in the rat cerebral cortex. Experimental Brain Research 82, 566–574.

    Google Scholar 

  • Kruse, J., Keilhauer, G., Faissner, A., Timpl, R. & Schachner, M. (1985) The J1 glycoprotein. A novel nervous system cell adhesion molecule of the L2/HNK1 family. Nature 316, 146–148.

    PubMed  Google Scholar 

  • Lafarga, M., Berciano, M. T. & Blanco, M. (1984) The perineuronal net in the fastigial nucleus of the rat cerebellum. Anatomy and Embryology 170, 79–85.

    PubMed  Google Scholar 

  • Lochter, A., Taylor, J., Fuss, B. & Schachner, M. (1994) The extracelluilar matrix molecule janusin regulates neuronal morphology in a substrate and culture time dependent manner. European Journal of Neuroscience 6, 597–606.

    PubMed  Google Scholar 

  • Lochter, A., Vaughan, L., Kaplony, A., Prochiantz, A., Schachner, M. & Faissner, A. (1991) J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth. Journal of Cell Biology 113, 1159–1171.

    PubMed  Google Scholar 

  • Lugaro, E. (1895) Sulla struttura del nucleo dentato del cervelletto nell'uomo. Monitore zoologico italiano. 6, 5–12.

    Google Scholar 

  • LÜth, H. J., Fischer, J. & Celio, M. R. (1992) Soybean lectin binding neurons in visual cortex of the rat contain parvalbumin and are covered by glial nets. Journal of Neurocytology 21, 211–221.

    PubMed  Google Scholar 

  • Milev, P., Chiba, A., Haring, M., Rauvala, H., Schachner, M., Ranscht, B., Margolis, R. K. & Margolis, R. U. (1998) High affinity binding and overlapping localization of neurocan and phosphacan/protein-tyrosine phosphatase-zeta/beta with tenascin-R, amphoterin, and the heparinbinding growth-associated molecule. J. Biol. Chem. 273, 6998–7005.

    PubMed  Google Scholar 

  • Morganti, M. C., Taylor, J., Pesheva, P. & Schachner, M. (1990) Oligodendrocyte-derived J1–160/180 extracellular matrix glycoproteins are adhesive or repulsive depending on the partner cell type and time of interaction. Experimental Neurology 109, 98–110.

    PubMed  Google Scholar 

  • Nagakawa, F., Schulte, B. A., & Spicer, S. S. (1986a) Selective cytochemical demonstration of glycoconjugate-containing terminal N-acetylgalactosamine on some brain neurons. Journal of Comparative Neurology 243, 280–290.

    PubMed  Google Scholar 

  • Nagakawa, F., Schulte, B. A., Wu, J. Y. & Spicer, S. S. (1986b) GABA-ergic neurons of the rodent brain correspond partially with those staining for glycoconjugate with N-acetylgalactosamine. Journal of Neurocytology 15, 389–396.

    PubMed  Google Scholar 

  • Pesheva, P., Gennarini, G., Goridis, C. & Schachner, M. (1993) The F3/F11 cell adhesion molecule mediates the repulsion of neurons by the extracellular matrix glycoprotein J1–160–180. Neuron 10, 69–82.

    PubMed  Google Scholar 

  • Pesheva, P., Spiess, E. & Schachner, M. (1989) J1–160 and J1–180 are oligodendrocyte-secreted, nonpermissive substrates for cell adhesion. Journal of Cell Biology 109, 1765–1778.

    PubMed  Google Scholar 

  • RamÓn y Cajal, S. (1898) La red superficial de las células nerviosas centrales. Revista trimestral micrográfica, Madrid 3, 199–206.

    Google Scholar 

  • Rathjen, F. G., Wolff, J. M. & Chiquetehrismann, R. (1991) Tenascin-R: A chick neural extracellular matrix protein involved in cell attachment co-purifies with the cell recognition molecule F11. Development 113, 151–164.

    PubMed  Google Scholar 

  • RÖhrenbeck, J., WÄssle, H. & Boycott, B. B., (1989) Horizontal cells in the monkey retina: Immunocytochemical staining with antibodies against calcium-binding proteins. European Journal of Neuroscience 1, 407–420.

    PubMed  Google Scholar 

  • Schachner, M., Taylor, J., Bartsch, U. & Pesheva, P. (1994) The perplexing multifunctionality of janusin, a tenascin-related molecule. Perspectives in Developmental Neurobiology 2, 33–41.

    Google Scholar 

  • Schwaller, B., Buchwald, P., BlÜmcke, I., Celio, M. R. & Hunziker, W. (1993) Characterization of a polyclonal antiserum against the purified human recombinant calcium-binding protein calretinin. Cell Calcium 14, 601–610.

    PubMed  Google Scholar 

  • Srinivasan, J., Schachner, M. & Catterall, W. A. (1998) Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proceedings of the National Academy of Sciences USA 95, 15753–15757.

    Google Scholar 

  • Streit, W. J., Schulte, B. A., Balentine, J. D. & Spicer, S. S. (1986) Evidence for glycoconjugates in nociceptive primary sensory neurons and its origin from the Golgi-complex. Brain Research 377, 1–17.

    PubMed  Google Scholar 

  • Taylor, J., Pesheva, P. & Schachner, M. (1993) The influence of janusin and tenascin on growth cone behavior in vitro. Journal of Neuroscience Research 35, 347–362.

    PubMed  Google Scholar 

  • Viggiano, D. (2000) The two faces of perineuronal nets. NeuroReport 14, 2087–2090.

    Google Scholar 

  • Weber, P., Bartsch, U., Rasband, M. N., Czaniera, R., Lang, Y., Bluethmann, H., Margolis, R. U., Levinson, S. R., Shrager, P., Montag. D. & Schachner, M. (1999) Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. Journal of Neuroscience 19, 4245–4262.

    PubMed  Google Scholar 

  • Wintergerst, E. S., Fuss, B. & Bartsch, U. (1993) Localization of Janusin mRNA in the central nervous system of the developing and adult mouse. European Journal of Neuroscience 5, 299–310.

    PubMed  Google Scholar 

  • Wintergerst, E. S., Vogt-Weisenhorn D., Rathjen F. G., riederer, B. M., Lambert, S. & Celio, M. R. (1996) Temporal and spatial appearance of the membrane cytoskeleton and perineuronal nets in the rat neocortex. Neuroscience Letters 209, 173–176.

    PubMed  Google Scholar 

  • Yamamoto, M., Marshall, P., Hemmendinger, L. M., Boyer, A. B. & Caviness, V. S. (1988) Distribution of glucuronic acid-and sulfate containing glycoproteins in the central nervous system of the adult mouse. Neuroscience Research 5, 273–298.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Celio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wintergerst, E.S., Rathjen, F.G., Schwaller, B. et al. Tenascin-R associates extracellularly with parvalbumin immunoreactive neurones but is synthesised by another neuronal population in the adult rat cerebral cortex. J Neurocytol 30, 293–301 (2001). https://doi.org/10.1023/A:1014452212067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014452212067

Keywords

Navigation