Skip to main content
Log in

Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling

  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

This paper examines two major possibilities for the striking loss of skeletal muscle mass and strength that occurs in very old animals and humans. It is concluded that muscle regeneration is not significantly impaired with age. Instead, it seems that individual myofibres undergo atrophy, with selective death of the fast type 2B myofibres, due to the combined effects of many age-related changes the main causes being: nutrition(under-nutrition and lack of vitamin D),decreased hormone levels (e.g growth hormone, testosterone), reduced physical activity, and a loss of nerves that innervate the muscles. The discussion focusses on the central role of a local muscle form of insulin-like growth factor-I (IGF-I) in muscle hypertrophy, atrophy and motor neurone loss. Reduced IGF-Isignalling is involved in muscle atrophy and results from decreased muscle exercise, reduced growth hormone and insulin levels, reduced vitamin D, and treatment with drugs like corticosteroids, dexamethasone, and cyclosporin. In addition, elevated levels of inflammatory cytokines like TNF-α and IL-6can cause muscle wasting (cachexia) although this is usually associated with disease, andTNF-α may also act (at least in part) by inhibiting IGF-I signalling. The possible clinical prevention of age-related muscle wasting (and associated motor neurone loss) by the locally acting muscle isoform of IGF-I is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argiles JM, Alvarez B, Carbo N, Busquets S, Van Royen M and Lopez-Soriano FJ (2000) The divergent effects of tumour necrosis factor-alpha on skeletal muscle: implications in wasting. Eur Cytokine Netw 11: 552-559

    PubMed  CAS  Google Scholar 

  • Argiles JM, Meijsing SH, Pallares-Trujillo J, Guirao X and Lopez-Soriano FJ (2001) Cancer cachexia: a therapeutic approach. Med Res Rev 21: 83-101

    Article  PubMed  CAS  Google Scholar 

  • Balaivas M and Carlson BM (1991) Muscle fibre branching: differences between grafts in young and old rats. Mech Ageing Dev 60: 43-53

    Article  Google Scholar 

  • Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N and Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the age-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95: 15603-15607

    Article  PubMed  CAS  Google Scholar 

  • Barton-Davis ER, Shoturma DI and Sweeney HL (1999) Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle. Acta Physiol Scand 167: 301-305

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner RN, Waters DL, Gallagher D, Morley JE and Garry PJ (1999) Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 107: 123-136

    Article  PubMed  CAS  Google Scholar 

  • Beiner JM, Jokl P, Cholewicki J and Panjabi MM (1999) The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med 27: 2-9

    PubMed  CAS  Google Scholar 

  • Borasio GD, Robberecht W, Leigh PN, Emile J, Guiloff RJ, Jerusalem F, Silani V, Vos PE, Wokke JHJ and Dobbins T (1998) A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. Eur ALS Neurol 51: 583-586

    CAS  Google Scholar 

  • Brooks SV and Faulkner JA (1996) The magnitude of the initial injury induced by stretches of maximally activated muscle fibers of mice and rats increases with old age. J Physiol 497: 573-580

    PubMed  CAS  Google Scholar 

  • Broussard SR, Zhou J, Venters HD, Bluthe RM, Freund GG, Johnson RS, Dantzer R and Kelley KW(2001) At the interface of environmental-immune interactions: cytokine and growth factor receptors. J Anim Sci 79 (E Suppl): E268-E284

    Google Scholar 

  • Buitrago C, Vazquez G, De Boland AR and Boland RL (2000) Activation of Src kinase in skeletal muscle cells by 1,1,25-(OH(2))-vitaminD(3) correlates with tyrosine phosphorylation of the vitamin D receptor (VDR) and VDR-Src interaction. J Cell Biochem 79(2): 274-281

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM, Dedkov EI, Borisov AB and Faulkner JA (2001) Skeletal muscle regeneration in very old rats. J Gerontol 56A: B1-B10

    Google Scholar 

  • Carlson BM and Faulkner JA (1998) Muscle regeneration in young and old rats: effects of motor nerve transection with and without marcaine treatment. J Gerontol 53: B52-57

    CAS  Google Scholar 

  • Chapman IM, MacIntosh CG, Morley JE and Horowitz M (2002) The anorexia of ageing. Biogerontology 3: 67-71 (this issue) Cleveland DW (1999) From Charcot to SOD1: Mechanisms of selective motor neuron death in ALS. Neuron 24: 515-520

    Google Scholar 

  • Devor ST and Faulkner JA (1999) Regeneration of new fibres in muscles of old rats reduces contraction-induced injury. J Appl Physiol 87: 750-756

    PubMed  CAS  Google Scholar 

  • Eriksen EF and Glerup H (2002) Vitamin D deficiency and aging: implications for general health and osteoporosis. Biogerontology 3: 73-77 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Faulkner JA, Brooks SV and Zerba E (1995) Muscle atrophy and weakness with aging: contraction-induced injury as an underlying mechanism. J Gerontol 50A: 124-129

    Google Scholar 

  • Festoff BW, Yang SX, Vaught J, Bryan C and Ma JY (1995) The insulin-like growth factor signaling system and ALS neurotrophic factor treatment strategies. J Neurol Sci 129 (Suppl): 114-121

    Article  PubMed  CAS  Google Scholar 

  • Frost RA, Lang CH and Gelato MC (1997) Transient exposure of human myoblasts to tumour necrosis factor-? inhibits serum and insulin-like growth factor-I stimulated protein synthesis. Endocrinology 138: 4153-4159

    Article  PubMed  CAS  Google Scholar 

  • Gayan-Ramirez G, Vanderhoydonc F, Verhoeven G and Decramer M (1999) Acute treatment with corticosteroids decreases IGF-1 and IGF-2 expression in the rat diaphragm and gastrocnemius. Am J Respir Critical Care Med 159: 283-289

    CAS  Google Scholar 

  • Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Nair G, Arver S and Bhasin S (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proce Natl Acad Sci USA 95: 14938-14943

    Article  CAS  Google Scholar 

  • Grounds MD (1991) Towards understanding skeletal muscle regeneration. Pathol Res Practice 187: 1-22

    CAS  Google Scholar 

  • Grounds MD (1998) Age-Associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann NY Acad Sci 854: 78-91

    Article  PubMed  CAS  Google Scholar 

  • Hantai D, Akaaboune M, Lagord C, Murawsky M, Houenou LJ, Festoff BW, Vaught JL, Rieger F and Blondet B (1995) Beneficial effects of insulin-like growth factor-I on wobbler mouse motoneuron disease. J Neurol Sci 129(Suppl): 122-126

    Article  PubMed  CAS  Google Scholar 

  • Hayes A. and Williams DA (1998) Examining potential drug therapies for muscular dystrophy utilising the dy/dy mouse: 1. Clenbuterol. J Neurol Sci 157: 122-128

    Article  PubMed  CAS  Google Scholar 

  • Lewis ME, Neff NT, Contreras PC, Stong DB, Oppenheim RW, Grebow PE and Vaught JL (1993) Insulin-like growth factor-I: potential for treatment of motor neuronal disorders. Exp Neurol 124: 73-88

    Article  PubMed  CAS  Google Scholar 

  • Luff AR (1998) Age-associated changes in the innervation of muscle fibres and changes in the mechanical properties of motor units. Ann NY Acad Sci 854: 92-101

    Article  PubMed  CAS  Google Scholar 

  • McKoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B and Goldspink G (1999) Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol 15: 583-592

    Article  Google Scholar 

  • McPherron AC, Lawler AM and Lee S-J (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83-90

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D, Greenhalgh CJ, Viney E, Willson TA, Starr R, Nicola NA, Hilton DJ and Alexander WS (2000) Gigantism in mice lacking suppressor of cytokine signalling-2. Nature 405: 1069-1073

    Article  PubMed  CAS  Google Scholar 

  • Miller RG (1999) Clinical trials in motorneuron disease. J Child Neurol 14: 173-179

    PubMed  CAS  Google Scholar 

  • Musaro A, McCullagh K, Houghton J, Elizabeth R, Barton H, Sweeney L and Rosenthal N (2001) < Localized IGF-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genet 27: 195-200

    Article  PubMed  CAS  Google Scholar 

  • Musaro A, McCullagh KJA, Naya FJ, Olson EN and Rosenthal N (1999) IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400: 581-585

    Article  PubMed  CAS  Google Scholar 

  • Petersen JE, Kulik G, Jelinek T, Reuter CW, Shannon JA and Weber MJ (1996) Src phorphorylates the insulin-like growth factor type I receptor on the autophosporylation sites. requirement for transformation by src. J Biol Chem 271: 31562-31571

    Article  Google Scholar 

  • Ravaglia G, Forti P, Maioli F, Nesi B, Pratelli L, Cucinotta D, Bastagli L and Cavelli G (2000) Body composition, Sex steroids, IGF-I, and bone-mineral status in aging men. J Gerontol Med Sci 55A: M516-M521

    CAS  Google Scholar 

  • Rosenblatt JD and Parry DJ (1992) Gamma-Irradiation Prevents Compensatory Hypertrophy of Overloaded Mouse Extensor Digitorum Longus Muscle. J Appl Physiol 73: 2538-2543

    PubMed  CAS  Google Scholar 

  • Sharma M, Kambadur R, Matthews KG, Somers WG, Devlin GP, Conaglen JV, Fowke PJ and Bass JJ (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180: 1-9

    Article  PubMed  CAS  Google Scholar 

  • Singleton JR, Baker BL and Thorburn A (2000) Dexamethasone inhibits insulin-like growth factor signaling and potentiates myoblast apoptosis. Endocrinology 141: 2945-2950

    Article  PubMed  CAS  Google Scholar 

  • Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, LeRoith D, Tornell J, Isaksson OG, Jansson JO and Ohlsson C (1999) Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA 96: 7088-7092

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF and Weinberg RA (1999) Interaction of the Ski Oncoprotein with Smad3 regulates TGF-? signalling. Mol Cell 4: 499-509

    Article  PubMed  CAS  Google Scholar 

  • Tawa NEJ and Goldberg AL (1994) Protein and Amino Acid Metabolism in Muscle. In: Engel AG and Franzini-Armstrong G (eds) Myology (2nd Edition), Vol 1, pp 683-707. McGraw Hill, New York

    Google Scholar 

  • Vandenburgh H, Chromiak J, Shansky J, Del Tatto M and Lemaire J (1999) Space travel directly induces skeletal muscle atrophy. FASEB J 13: 1031-1038

    PubMed  CAS  Google Scholar 

  • Vergani L, Losa M, Lesma E, Di Giulio AM, Torsello A, Muller EE and Gorio A (1999) Glycosaminoglycans boost insulin-like growth factor-I-promoted neuroprotection: blockade of motor neuron death in the wobbler mouse. Neuroscience 93: 565-572

    Article  PubMed  CAS  Google Scholar 

  • Verhaar HJ, Samson MM, Jansen PA, de Vreede PL, Manten JW and Duursma SA (2000) Muscle strength, functional mobility and vitamin D in older women. Aging 12: 455-460

    PubMed  CAS  Google Scholar 

  • Wolkow CA, Kimura KD, Lee M-S and Ruvkun G (2000) Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290: 147-150

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Hadhazy M, Wehling M, Tidball JG and McNally EM(2000) Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett 474: 71-75

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grounds, M.D. Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling. Biogerontology 3, 19–24 (2002). https://doi.org/10.1023/A:1015234709314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015234709314

Navigation