Skip to main content
Log in

Transdermal Delivery of Narcotic Analgesics: Comparative Permeabilities of Narcotic Analgesics Through Human Cadaver Skin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Relationships between the in vitro permeation rates of select narcotic analgesics through human skin and their physicochemical properties were investigated by following the permeation kinetics of six representative compounds in small diffusion cells. The relative permeability coefficients of three phenylpiperidine analogues, meperidine, fentanyl, and sufentanil, all measured on a single piece of skin, were 3.7 × 10−3, 5.6 × 10−3, and 1.2 × 10−2 cm/hr, respectively. Using membranes from the same skin section, the permeability coefficients of three opioid alkaloids, morphine, codeine, and hydromorphone, were considerably lower, at 9.3 × 10−6, 4.9 × 10−5, and 1.4 × 10−5 cm/hr, respectively. The high permeability coefficients of the former compounds are due to their highly lipophilic nature as reflected in high octanol/water partition coefficients and low solubility parameters. Generally, the permeability coefficients of the narcotics increase as the lipophilicity increases. When viewed in literature perspective, the data suggest that aqueous tissue control of transport is approached in the case of the phenylpiperidine analogues, all of which have K octanol/water values greater than 40. Permeability coefficients of fentanyl and sufentanil were also determined as a function of pH over the pH range 7.4 to 9.4, in this instance with membranes prepared from additional samples of skin. The permeability coefficients of each drug varied less than threefold over the pH range, a behavior consistent with the highly hydrophobic natures of the compounds. The low permeability coefficients of morphine, codeine, and hydromorphone coupled with their low potencies make these drugs poor transdermal candidates. It appears that fentanyl and sufentanil can be successfully transdermally delivered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. D. Adams. In M. Weisenberg (ed.), Pain-Clinical and Experimental Perspective, C. V. Mosby, St. Louis, Mo., 1975, pp. 326–331.

    Google Scholar 

  2. M. J. Chatton. In M. A. Krupp and M. J. Chatton (eds.), Current Medical Diagnosis and Treatment, Lang, Los Altos, Calif., 1982, p. 9.

    Google Scholar 

  3. R. B. Catalano. Semin Oncol. 2:379–392 (1975).

    Google Scholar 

  4. A. G. Lipman. Cancer Nurs. 3:39–46 (1980).

    Google Scholar 

  5. J. H. Jaffe and W. R. Martin. In A. G. Goodman, L. S. Goodman, and A. Gilman, The Pharmacological Basis of Therapeutics, Macmillan, New York, 1980, pp. 494–534.

    Google Scholar 

  6. J. J. Bonica. In J. J. Bonica and V. Ventafridda (eds.), Advances in Pain Research and Therapy, Vol. 2, Raven Press, New York, 1974, pp. 1–12.

    Google Scholar 

  7. R. Houde. In J. J. Bonica and V. Ventafridda (eds.), Advances in Pain Research and Therapy, Vol. 2, Raven Press, New York, 1974, pp. 527–534.

    Google Scholar 

  8. R. M. Marks and E. J. Sachar. Anal. Intern. Med. 78:173–181 (1973).

    Google Scholar 

  9. K. M. Foley. Med. Clin. N. Am. 66:1091–1104 (1982).

    Google Scholar 

  10. A. S. Michaels, S. K. Chandrasekaran, and J. E. Shaw. AIChE J. 21:985–996 (1975).

    Google Scholar 

  11. A. H. Beckett, J. W. Gorrod, and D. C. Taylor. Pharm. Pharmacol. 24(Suppl.):65P–70P (1972).

    Google Scholar 

  12. S. Riegelman. Clin. Pharmacol. Ther. 16:873–883 (1974).

    Google Scholar 

  13. S. K. Chandrasekaran and J. E. Shah. Contemporary Topics in Polymer Science, Vol. 2, Plenum Press, New York, 1977, pp. 291–305.

    Google Scholar 

  14. J. E. Shaw, S. K. Chandrasekaran, A. S. Michaels, and L Taskovich. In H. I. Maibach (ed.), Animal Models in Dermatology, Churchill Livingston, London, 1975, pp. 138–146.

    Google Scholar 

  15. S. K. Chandrasekaran, W. Bayne, and J. E. Shaw. J. Pharm. Sci. 67:1370–1374 (1978).

    Google Scholar 

  16. J. E. Shaw, L. Taskovich, and S. K. Chandrasekaran. In V. A. Drill (ed.), Current Concepts in Cutaneous Toxicity, Academic Press, New York, 1980, pp. 127–133.

    Google Scholar 

  17. J. E. Shaw. Am. Heart J. 108:217–223 (1984).

    Google Scholar 

  18. M. Wolff, G. Cordes, and V. Luckow. Pharm. Res. 2:23–29 (1985).

    Google Scholar 

  19. S. D. Roy and G. L. Flynn. Pharm. Res. 5:580–586 (1988).

    Google Scholar 

  20. S. D. Roy and G. L. Flynn. Pharm. Res. 6:147–151 (1989).

    Google Scholar 

  21. G. L. Flynn, H. Durrheim, and W. I. Higuchi. J. Pharm. Sci. 70:52–56 (1981).

    Google Scholar 

  22. I. H. Blank and D. J. McAuliffe. J. Invest. Dermatol. 85:522–526 (1985).

    Google Scholar 

  23. G. R. Nakamura and E. L. Way. Anal. Chem. 47:775–778 (1975).

    Google Scholar 

  24. R. J. Scheuplein and I. H. Blank. Physiol. Rev. 51:702–747 (1971).

    Google Scholar 

  25. V. H. K. Li, J. R. Robinson, and V. H. L. Lee. In J. R. Robinson and V. H. L. Lee (eds.), Controlled Drug Delivery, Fundamentals and Applications (II ed.). Marcel Dekker, New York, 1987, pp. 14, 49.

    Google Scholar 

  26. G. L. Flynn and B. Stewart. Drug Dev. Res. 13:169–185 (1988).

    Google Scholar 

  27. G. L. Flynn and S. H. Yalkowsky. J. Pharm. Sci. 61:838–852 (1972).

    Google Scholar 

  28. R. J. Scheuplein. J. Invest. Dermatol. 47:344–346 (1986).

    Google Scholar 

  29. S. H. Yalkowsky and G. L. Flynn. J. Pharm. Sci. 63:1276–1280 (1974).

    Google Scholar 

  30. G. L. Flynn. In R. L. Bronough and H. I. Maibach (eds.), Percutaneous Absorption, Marcel Dekker, New York and Basel, 1985, p. 17.

    Google Scholar 

  31. R. J. Scheuplein and R. L. Bronough. In L. A. Goldsmith (ed.), Biochemistry and Physiology of the Skin, Oxford University Press, New York and Oxford, 1983, pp. 1271–1273.

    Google Scholar 

  32. W. J. Dunn III, S. Grigoras, and E. Johansson. In W. J. Dunn III, J. H. Block, and R. S. Pearlman (eds.), Partition Coefficient: Determination and Estimation, Pergamon, New York, 1986, pp. 26–27.

    Google Scholar 

  33. K. B. Sloan, S. A. M. Koach, K. G. Siver, and F. P. Flower. J. Invest. Dermatol. 87:244–252 (1986).

    Google Scholar 

  34. Z. Liron and S. Cohen. J. Pharm. Sci. 73:538–542 (1984).

    Google Scholar 

  35. T. A. Hagen and G. L. Flynn. J. Pharm. Sci. 72:409–414 (1983).

    Google Scholar 

  36. S.-Y. Chang, L. Moore, and Y. W. Chien. Pharm. Res. 5:718–722 (1988).

    Google Scholar 

  37. D. A. McClain and C. C. Hug. Clin. Pharmacol. Ther. 28:106–114 (1980).

    Google Scholar 

  38. R. F. Cookson. Br. J. Anaesth. 52:959 (1980).

    Google Scholar 

  39. W. D. White, D. J. Pearce, and J. Norman. Br. Med. J. 2:166–167 (1980).

    Google Scholar 

  40. M. J. Wolfe and G. K. Davies. Br. J. Anaesth. 52:357–358 (1980).

    Google Scholar 

  41. B. Kay. Anesthesia 36:949–951 (1981).

    Google Scholar 

  42. W. S. Nimmo and J. G. Todd. Br. J. Anesth. 57:250–254 (1985).

    Google Scholar 

  43. G. K. Gourlay, S. R. Kowalski, J. L. Plummer, M. J. Cousins, and P. J. Armstrong. Anesth. Analg. 67:329–337 (1988).

    Google Scholar 

  44. C. Hansch and S. Anderson. J. Org. Chem. 32:2583–2586 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S.D., Flynn, G.L. Transdermal Delivery of Narcotic Analgesics: Comparative Permeabilities of Narcotic Analgesics Through Human Cadaver Skin. Pharm Res 6, 825–832 (1989). https://doi.org/10.1023/A:1015944018555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015944018555

Navigation