Skip to main content
Log in

Comparison of Cell Proliferation and Toxicity Assays Using Two Cationic Liposomes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The present study compares different cytotoxicity and cell proliferation assays including cell morphology, mitochondrial activity, DNA synthesis, and cell viability and toxicity assays. CaSki cells were exposed to two cationic liposomal preparations containing dimethyldioctadecyl-ammonium bromide (DDAB), dioleoylphosphatidylethanolamine (DOPE) and a commercial transfection-reagent DOTAP(N[l-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium-methylsulfate). The results provided by these assays were similar. However, the lactate dehydrogenase assay was more sensitive in measuring early damages of cell membranes than the Trypan blue assay. Also, cell morphology showed early toxic changes, such as cytoplasmic vacuolization and cell shrinking, and it should be included with such toxicity evaluations. DDAB:DOPE was more toxic than DOTAP. The cells treated with DOTAP at 10 µM were surviving as well as the control cells, while DOTAP at 40 µM and DDAB: DOPE at 10 µM had slight toxic effects on CaSki cells. The most toxic effects were seen in CaSki cells after treatment with DDAB: DOPE at 40 µM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. H. Taylor, P. S. Woods, and W. L. Hughes. The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium labelled thymidine. Biochemistry. 43:122–128 (1957).

    Google Scholar 

  2. H. G. Gratzner, R. C. Leif, D. J. Ingram, and A. Castro. The use of antibody spesific for bromodeoxyuridine for the immunofluorescent determination of DNA replication in single cells and chromosomes. Exp. Cell Res. 95:88–94 (1975).

    Google Scholar 

  3. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65:55–63 (1983).

    Google Scholar 

  4. N. W. Roehm, G. H. Rodgers, S. M. Hatfield, and A. L. Glasebrook. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J. Immunol. Methods. 142:257–265 (1991).

    Google Scholar 

  5. A. H. Cory, T. C. Owen, J. A. Barltrop, and J. G. Cory. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 3:207–212 (1991).

    Google Scholar 

  6. K. T. Brunner, J. Mauel, M. C. Cerottini, and B. Chapuis. Quantitive assay of the lytic action of immune lymphoid cells on 51Cr-labelled allogenic target cells in vitro: inhibition by isoantibody and by drugs. Immunology. 41:181–196 (1968).

    Google Scholar 

  7. C. Korzeniewski, and D. M. Callewaert. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods. 64:313–320 (1983).

    Google Scholar 

  8. T. R. Mosmann, and T. A. T. Fong. Spesific assays for cytokine production by T cells: a review. J. Immunol. Methods. 116:151–158 (1989).

    Google Scholar 

  9. F. Denizot, and R. Lang. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods. 89:271–277 (1986).

    Google Scholar 

  10. M. Ferrari, M. C. Fornasiero, and A. M. Isetta. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J. Immunol. Methods. 131:165–172 (1990).

    Google Scholar 

  11. K. Heeg, J. Reimann, D. Kabelitz, C. Hardt, and H. Wagner. A rapid colorimetric assay for the determination of IL-2-producing helper T cell frequencies. J. Immunol. Methods. 77:237–246 (1985).

    Google Scholar 

  12. D. A. Scudiero, R. H. Shoemaker, K. D. Paull, A. Monks, S. Tierney, T. H. Nofziger, M. J. Currens, D. Seniff, and M. R. Boyd. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensivity in culture using human and other tumor cell lines. Cancer Res. 48:4827–4833 (1988).

    Google Scholar 

  13. A. Raza, C. Spiridonidis, K. Ucar, G. Mayers, R. Bankert, and H. D. Preisler. Double labeling of S-phase murine cells with bromodeoxyuridine and a second DNA-specific Probe. Cancer Res. 45:2283–2287 (1985).

    Google Scholar 

  14. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U.S.A. 84:7413–7417 (1987).

    Google Scholar 

  15. R. W. Malone, P. L. Felgner, and I. M. Verma. Cationic liposome-mediated RNA transfection. Proc. Natl. Acad. Sci. U.S.A. 86:6077–6081 (1989).

    Google Scholar 

  16. C. F. Bennet, M.-Y. Chiang, H. Chan, J. E. E. Shoemaker, and C. K. Mirabelli. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol. Pharmacol. 41:1023–1033 (1992).

    Google Scholar 

  17. F. Cumin, F. Asselbergs, M. Lartigot, and E. Felder. Modulation of human prorenin gene expression by antisense oligonucleotides in transfected CHO cells. Eur. J. Biochem. 212:347–354 (1993).

    Google Scholar 

  18. A. R. Thierry, A. Rahman, and A. Dritschilo. Liposomal delivery as a new approach to transport antisense oligonucleotides. In R. P. Erickson and J. G. Izant (eds.), Gene Regulation: Biology of antisense RNA and DNA, Raven Press, Ltd. 2, NY, 1992, pp. 147–161.

    Google Scholar 

  19. R. Leventis and J. R. Silvius. Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim. Biophys. Acta. 1023:124–132 (1990).

    Google Scholar 

  20. E. Yoshihara, and T. Nakae. Cytolytic activity liposomes containing stearylamine. Biochim. Bhiophys. Acta. 854:530–546 (1986).

    Google Scholar 

  21. Y. A. Hannun, and R. M. Bell. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 243:500–507 (1989).

    Google Scholar 

  22. L. Stamatatos, R. Leventis, M. J. Zuckermann, and J. R. Silvius. Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry. 27:3917–3925 (1988).

    Google Scholar 

  23. J. K. Rose, L. Buonocore, and M. A. Whitt. A new cationic liposome reagent mediating nearly quantitive transfection of animal cells. Biotechniques. 10:520–525 (1991).

    Google Scholar 

  24. K. Lappalainen, A. Urtti, I. Jääskeläinen, K. Syrjänen, and S. Syrjänen. Cationic liposomes mediated delivery of antisense oligonucleotides targeted to HPV 16 E7 mRNA in CaSki cells. Antiviral Reseach. 23:119–130 (1994).

    Google Scholar 

  25. A. M. Krieg. Uptake and efficacy of phospodiester and modified antisense oligonucleotides in primary cell cultures. Clin. Chem. 39:710–712 (1993).

    Google Scholar 

  26. A. A. van de Loosdrecht, E. Nennie, G. Ossenkoppele, R. H. J. Beelen, and M. M. A. C. Langenhuijsen. Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay. J. Immunol. Methods. 141:15–22 (1991).

    Google Scholar 

  27. M. Hansen, S. E. Nielsen, and K. Berg. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods. 119:203–210 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappalainen, K., Jääskeläinen, I., Syrjänen, K. et al. Comparison of Cell Proliferation and Toxicity Assays Using Two Cationic Liposomes. Pharm Res 11, 1127–1131 (1994). https://doi.org/10.1023/A:1018932714745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018932714745

Navigation