Skip to main content
Log in

Effects of Chronic Restraint Stress on Feeding Behavior and on Monoamine Levels in Different Brain Structures in Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Monoaminergic systems are important modulators of the responses to stress. Stress may influence feeding behavior, and the involvement of monoamines in the control of food intake is well recognized. We investigated the effects induced by chronic-restraint stress, 1 h a day, for 40 days, on eating behavior and on monoamines in distinct brain structures. Increased consumption of sweet pellets, and not of peanuts, was observed. Dopamine (DA), serotonin (5–HT), and their metabolites were measured by HPLC-EC. After chronic restraint, the results observed were decreased 5–HT in hippocampus, with increased 5–HIAA/5–HT; decreased 5–HIAA levels in cortex; reduction in DA in hippocampus, and increased levels in amygdala and hypothalamus; HVA increased in cortex, as well as HVA/DA ratio, while DOPAC/DA decreased. HVA decreased in hypothalamus, as well as HVA/DA, and DOPAC/DA and HVA/DA decreased in the amygdala. These results suggest that restraint stress differentially affects the activity of central dopaminergic and serotonergic neurons, and this may be related to the effects observed in eating behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hargreaves, K. M. 1990. Neuroendocrine markers of stress. Anesth. Progr. 37:99–105.

    Google Scholar 

  2. Pucilowski, O., Overstreet, D. H., Rezvani, A H., and Kanowsky, D S. 1993. Chronic mild stress-induced anhedonia: Greater effect in a genetic rat model of depression. Physiol. Behav. 54:1215–1220.

    PubMed  Google Scholar 

  3. Paré, W. P. and Redei, E. 1993. Sex differences and stress response of WKY rats. Physiol. Behav. 54:1179–1185.

    PubMed  Google Scholar 

  4. Marti, O., Marti, J., and Armário, A. 1994. Effect of chronic stress on food intake in rats: Influence of stressor intensity and duration of daily exposure. Physiol. Behav. 55:747–753.

    PubMed  Google Scholar 

  5. Dess N. K., Raizer J., Chapmen C. D., and Garcia J. 1988. Stressors in the learned helplessness paradigm: Effects on body weight and conditioned taste aversion in rats. Physiol. Behav. 44:483–490.

    PubMed  Google Scholar 

  6. Ely, D. R., Dapper, V., Marasca, J., Corrêa, J. B., Gamaro, G. D., Xavier M. H., Michalowsky, M. B., Catelli, D., Rosat, R., Ferreira, M. B. C., and Dalmaz, C. 1997. Effect of restraint stress on feeding behavior of rats. Physiol. Behav. 61:395–398.

    PubMed  Google Scholar 

  7. Silveria P. P., Xavier M. H., Souza F. H., Manoli, L. P., Rosat, R. M., Ferreira, M. B., and Dalmaz, C. 2000 Interaction between repeated restraint stress and concomitant midazolam administration on sweet food ingestion in rats. Braz. J. Med. Biol. 33:1343–1350.

    Google Scholar 

  8. Yates, A. 1992. Biological considerations in the etiology of eating. Pediatr. Ann. 21:739–744.

    PubMed  Google Scholar 

  9. Levine, M. D. and Marcus, M. D. 1997. Eating behavior following stress in women with and without bulimic symptoms. Ann. Behav. Med. 19:132–138.

    PubMed  Google Scholar 

  10. Wurtman, R. J. and Wurtman, J. J. 1995. Brain serotonin, carbohydrate craving, obesity and depression. Obes. Res. Suppl. 4:477S-480S.

    Google Scholar 

  11. Blundell, J. 1991. Pharmacological approaches to appetite suppression. Trends Pharmacol. Sci. 12:147–157.

    PubMed  Google Scholar 

  12. Orosco, M. and Nicolaidis, S. 1992. Spontaneous feeding-related monoaminergic changes in the rostromedial hypothalamus revealed by microdialysis. Physiol. Behav. 52:1015–1019.

    PubMed  Google Scholar 

  13. Paris, J. M., Lorens, S. A., Van de Kar, L. D., Urban J. H., Richardson-Morton, K. D., and Bethea, C. L. 1987. A comparison of acute stress paradigms: Hormonal responses and hypothalamic serotonin. Physiol. Behav. 39:33–43.

    PubMed  Google Scholar 

  14. Chauloff, F. 1993. Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res. Rev. 18:1–32.

    PubMed  Google Scholar 

  15. Cabib, S. and Puglisi-Allegra, S. 1994. Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences. J. Neurosci. 14:3333–3340.

    PubMed  Google Scholar 

  16. Malyszko, J., Urano, T., Takada, Y., and Takada, A. 1994. Serotonergic systems in brain and blood under stress and tranylcypromine treatment in rats. Brain Res. Bull. 35:9–13.

    PubMed  Google Scholar 

  17. Maes, M. and Meltzer, H. Y. 1995. The serotonin hypothesis of major depression. Charter 81, in Pages 933–944, Bloom F. E. and David J. (eds.), The Fourth Generation of Progress: Psychopharmacology, Kupfer Raven Press Ltd., New York.

    Google Scholar 

  18. Nishi, M. and Azmitia E. C. 1996. 5HT1a receptor expression is modulated by corticosteroid receptor agonist in primary rat hippocampal culture. Brain Res. 722:190–194.

    PubMed  Google Scholar 

  19. Adell, A., Casanovas, J. M., and Artigas F. 1997. Comparative study in the rat of the actions of different types of stress on the release of 5–HT in raphe nuclei on forebrain areas. Neuropharmacology 36:735–741.

    PubMed  Google Scholar 

  20. Amat, J., Matus-Amat, P., Watkins, L. R., and Maier S. F. 1998. Escapable and inescapable stress differentially alters extracellular levels of 5–HT in basolateral amygdala of the rats. Brain Res. 812:113–120.

    PubMed  Google Scholar 

  21. Herman, J. P. and Cullinan, W. E. 1997. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 61:180–190.

    Google Scholar 

  22. Chaouloff, F. 1993. Physiopharmacological interations between stress hormones and central serotonergic systems. Brain Res. Rev. 18:1–32.

    PubMed  Google Scholar 

  23. Graeff, F. G. 1993. Role of 5–HT in defensive behavior and anxiety. Rev. Neurosci. 4:181–211.

    PubMed  Google Scholar 

  24. Ljungberg, T. 1987. The dopamine system in the brain, functional classification of different dopamine receptors. Acta Psychiatr. Belg. 87:523–534.

    PubMed  Google Scholar 

  25. Caine, S. B., Heinrichs, S. C., Coffin, V. L., and Koob, G. F. 1995. Effects of the dopamine D-1 antagonist SCH 23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration in the rat. Brain Res. 692(2):47–56.

    PubMed  Google Scholar 

  26. Freedman, L. J. and Cassell, M. D. 1994. Distribution of dopaminergic fibers in the central division of the extended amygdala of the rat. Brain Res. 633:243–252.

    PubMed  Google Scholar 

  27. Ossowska, G. Nowa, G., Kata, R., Klenk-Majewska, B., Danilczuk, Z., Zebrowska-Lupina, I. 2001. Brain Monoamine receptors in a chronic unpredictable stress models in rats. J. Neural Transm. 108:311–319.

    PubMed  Google Scholar 

  28. Sorg, B. A. and Kalivas, P. W. 1993. Behavioral sensitization to stress and psychostimulants: Role of dopamine and excitatory aminoacids in the mesocorticolimbic system. Semin Neurosci. 5:343–350.

    Google Scholar 

  29. Detch, A. Y., Clarck, W. A., and Roth, R. H. 1990. Prefrontal cortical dopamine depletion enhances the responsiveness of meso-limbic dopamine neurons to stress. Brain Res. 521:311–315.

    PubMed  Google Scholar 

  30. Imperato, A., Angelucci, L., Casolini, P., Zocchi, A., and Puglisi-Alegra, S. 1992. Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res. 577:194–199.

    PubMed  Google Scholar 

  31. Mangiavacchi, S, Mais, F., Scheggi, S., Leggio, B., De Montis, M.G., and Gambarana, C. 2001. Long-term behavioral and neurochemical effects of chronic stress exposure in rats. J. Neurochem. 79:1113–1121.

    PubMed  Google Scholar 

  32. Goldstein, L. E., Rasmusson, A. M., Bunney, S., and Roth, R. H. 1996. Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J. Neurosci. 16:4787–4798.

    PubMed  Google Scholar 

  33. Davis, M., Hitchcock, J. M., Bowers, M. D., Berridge, C. W., Melia, K. R., and Roth, R. H. 1994. Stress-induced activation of prefrontal cortex dopamine turnover: blockade by lesions of the amygdala. Brain Res. 664:207–210.

    PubMed  Google Scholar 

  34. Paxinos, G. and Watson, C. 1998. The Rat Brain in Stereotaxic Coordinates, 4th ed. Academic Press, San Diego.

    Google Scholar 

  35. Johnson, G., Hallman, H., Mefford, I. and Adams, R. N. 1980. The use of liquid chromatography with electrochemical detection for the determination of adrenaline and other biogenic monoamines in the CNS. Pages 59–71, in Fuxe, K., Goldstein, M., Hokfelt, B., and Hokfelt, T. eds., Central Adrenaline Neurons, Pergamon, Oxford.

    Google Scholar 

  36. Claustre, Y., Rivy, J. P., Dennis, T., and Scatton, B. 1986. Pharmacological studies on stress-induced increase in frontal cortical dopamine metabolism in rat. J. Pharmacol. Exp. Ther. 238:693–700.

    PubMed  Google Scholar 

  37. Willner, P. and Muscat, R. 1991. Animal models for investigating the symptoms of depression and the mechanism of action of antidepressant drugs. Pages 183–98, in Oliver, B., Mos, J., and Slogen, J. L. (ed.), Animal Models in Psychopharmacology Advances in Pharmacological Sciences, Birkhäuser Verlag Basel, Boston.

    Google Scholar 

  38. Dunn, A. J. and Kramarcy, N. R. 1984. Neurochemical responses in stress: relationships between the hypothalamic-pituitary-adrenal and catecholamine systems, Pages 455–515, in Iversen, S. D. and Snyder, S. H. (eds.), Handbook of Psychopharmacology, Vol. 18. Plenum Press, New York.

    Google Scholar 

  39. Dunn, A. J. 1988. Stress-related activation of cerebral dopaminergic systems. Ann. N. Y. Acad. Sci. 537:188–205.

    PubMed  Google Scholar 

  40. Dunn, A. J. and File, S. E. 1983. Cold restraint alters dopamine metabolism in frontal cortex, nucleus accumbens and neostriatum. Physiol. Behav. 31:511–513.

    PubMed  Google Scholar 

  41. Deutch, A. Y., Tam, S. Y., and Roth, R. H. 1985. Footshock and conditioned stress increase 3,4–dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not substance nigra. Brain Res. 333:143–146.

    PubMed  Google Scholar 

  42. Dunn, A. J. 1988. Stress-related changes in cerebral cathecolamine and indoleamine metabolism: Lack of effect of adrenalectomy and corticosterone. J. Neurochem. 51:406–412.

    PubMed  Google Scholar 

  43. Herman, J. P., Guillonneau, D., Dantzer, R., Scatton, B., Semerdjian-Rouquier, L., and LeMoal, M. 1982. Differential effects of inescapable footshocks on of stimuli previously paired with footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci. 30:2207–2214.

    PubMed  Google Scholar 

  44. Joseph, M. A. and Kennett, G. A. 1983. Stress-induced release of 5–HT in the hippocampus and its dependence on increased tryptophan availability: An in vivo electrochemical study. Brain Res. 270:251–257.

    PubMed  Google Scholar 

  45. Inoue, T., Tsuchiya, K., and Koyama, T. 1994. Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Phamacol. Biochem. Behav. 49:911–920.

    Google Scholar 

  46. Chung, K. K., Martinez, M., and Herbert, J. 1999. Central serotonin depletion modulates the behavioral, endocrine and physiological response to repeated social stress and subsequent c-fos expression in the brain of male rats. Neuroscience 92:613–625.

    PubMed  Google Scholar 

  47. Berton, O., Aguerre, S., Sarrieau, A., Mormede, P., and Chaouloff, F. 1998. Differential effect of social stress on central serotonergic reactivity in Lewis and spontaneously hipertensive rats. Neuroscience 82:147–159.

    PubMed  Google Scholar 

  48. Blanchard, D. C., Cholvanich, P., Blanchard, R. J., Clow, D. W., Hammer, R. P., Rowlett, J. K., and Bardo, M. T. 1991. Serotonin, but not dopamine, metabolites are increased in selected brain regions of subordinate male rats in a colony environment. Brain Res. 568:61–66.

    PubMed  Google Scholar 

  49. Flügge, G. 1995. Dynamics of central nervous 5–HT1A receptors under psychosocial stress. J. Neurosci. 15:713–714.

    Google Scholar 

  50. De Kloe, E. 1991. Brain corticosteroid receptor balance and homeostatic control. Front. Neuroendocrinol. 12:95–164.

    Google Scholar 

  51. Barnes, N. M. and Sharp, T. 1999. A review of central 5–HT receptors and their function, Neuropharmacology 38:1083–1152.

    PubMed  Google Scholar 

  52. Chalmers, D., Kwak, S., Mansour, A., Akil, H., and Watson, S. 1993. Corticosteroids regulate brain hippocampal 5–HT1A receptors mRNA expression. J. Neurosci. 13:914–923.

    PubMed  Google Scholar 

  53. Holmes, M. C., Yau, J. L. W., French, K. L., and Seckl, J. R. 1995. The effect of adrenalectomy on 5–HT and receptor subtype mRNA expression in rat anterior hippocampus and dorsal raphe nucleus. Neuroscience 64:327–337.

    PubMed  Google Scholar 

  54. Yau, J. L. W, Noble, J., and Seckl, J. R. 2001. Acute restraint stress increases 5–HT7 receptor mRNA expressions in the rat hippocampus. Neurosci. Lett. 309:141–144.

    PubMed  Google Scholar 

  55. Mitchell, J. B., Betito, K., Rowe, W., Boksa, P., and Meaney, M. J. 1992. Serotonergic regulation of type-II corticosteroid receptors in hippocampal cells cultures: Evidence for the importance of serotonin-induced changes in cAMP levels. Neuroscience 48:632–639.

    Google Scholar 

  56. Eaton, M. J., Cheung, S., Moore, K. E., and Lookingland, K. J. 1996. Dopamine receptor-mediated regulation of corticotrophin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Res. 738:60–66.

    PubMed  Google Scholar 

  57. Thierry, R. M., Tassin, J. P., Blanc, G., and Glowiski, J. 1976. Selective activation of the mesocortical DA system by stress. Nature. 263:242–243.

    PubMed  Google Scholar 

  58. Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H., Chui, D. H., and Tabira, T. 2000. Chronic stress induced impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J. Neurosci. 20:1568–1574.

    PubMed  Google Scholar 

  59. Crespi, F., Wright, J. M., and Mobius, C. 1992. Isolation rearing of rats alters release of 5–hydroxytryptamine and dopamine in the frontal cortex: An in vivo electrochemical study. Exp. Brain Res. 88:495–501.

    PubMed  Google Scholar 

  60. Heidbreder, C. A., Weiss, I. C., Domeney, A. M., Pryce, C., Homberg, J., Hedou, G., Feldon, J., Moran, M. C., and Nelson, P. 2000. Behavioral, Neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 4:749–768.

    Google Scholar 

  61. Harro, J., Tonissar, M., Eller, M., Marika, E., Kask, A., and Oreland, L. 2001. Chronic variable stress and partial 5–HT denervation by parachloroamphetamine tretment in the rat: Effects on behavior and monoamine neurochemistry. Brain Res. 899:227–239.

    PubMed  Google Scholar 

  62. Beck, K. D. and Luine, V. N. 1999. Food deprivation modulates chronic stress effects on object recognition in male rats: role of monoamines and amino acids. Brain Res. 830:56–71.

    PubMed  Google Scholar 

  63. Rubkin, I. I., Zhou, Y., Volaufova, J., Smagin, G. N., Ryan, D. H., and Harris, R. B. 1997. Effect of restraint stress on food intake and body weight is determined by time of day. Am. J. Physiol. 273:1612–1622.

    Google Scholar 

  64. Fadda, F., Argiolas, A., Melis, M. R., Tissari, A. H., Onali, P. L., and Gessa, G. L. 1978. Stress-induced increase in 3,4–dihydroxyphenylacetic acid (DOPAC) levels in cerebral cortex and in n. accumbens: reversal by diazepam. Life Sci. 23:2219–2224.

    PubMed  Google Scholar 

  65. Beaulieu, S., Di Paolo, T., and Barden, N. 1986. Control of ACTH secretion by the central nucleus of the amygdala: implications of the serotonergic system and its relevance to the glucocorticoid delayed negative feedback mechanism. Neuroendocrinol. 44:247–254.

    Google Scholar 

  66. Rozendaal, B., Koolhaas, J. M., and Bohus, B. 1991. Attenuated cardiovascular, endocrine and behavioral response after a single footshock in central amygdaloid lesioned male rats. Physiol. Behav. 50:771–775.

    PubMed  Google Scholar 

  67. Henke, P. G. 1988. Recent studies of the nucleus of the amygdala and stress ulcers. Neurosci. Biobehav. Rev. 12:143–150.

    PubMed  Google Scholar 

  68. Cocco, M. L., Kunh, C. M., Ely, T. D., and Kilts, C. D. 1992. Selective activation of mesoamygdaloid dopamine neurons by conditioned stress: Attenuation by diazepam. Brain Res. 590:39–47.

    PubMed  Google Scholar 

  69. Guarraci, F. A., Frohard, R. J., and Kapp, B. S. 1999. Amigdaloid D1 dopamine receptor involvement in Pavlovian fear conditioning. Brain Res. 827:28–40.

    PubMed  Google Scholar 

  70. Ahn, S. and Phillips, A. G. 1999. Dopaminergic correlates of sensory-specific satiety in the medial prefrontal cortex and nucleus accumbens of the rat. J. Neurosci. 19:1–6.

    PubMed  Google Scholar 

  71. Berridge, K. C. and Robinson, T. E. 1998. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res. 28:309–369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, I.L.S., Gamaro, G.D., Vasconcellos, A.P. et al. Effects of Chronic Restraint Stress on Feeding Behavior and on Monoamine Levels in Different Brain Structures in Rats. Neurochem Res 27, 519–525 (2002). https://doi.org/10.1023/A:1019856821430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019856821430

Navigation