Skip to main content
Log in

Enhanced Permeability of Molecular Weight Markers and Poorly Bioavailable Compounds Across Caco-2 Cell Monolayers Using the Absorption Enhancer, Zonula Occludens Toxin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Zonula occludens toxin (Zot), a protein elaborated from Vibrio cholerae, has been shown to be capable of reversibly opening tight junctions. The objective of this work was to determine the stability of Zot and to examine the permeability of a series of molecular weight hydrophilic markers and therapeutic agents in the presence of Zot.

Methods. The transport of molecular weight markers (i.e., PEG 4000, FITC-dextran 10,000 and inulin) and therapeutic agents (i.e., acyclovir, cyclopsorin, paclitaxel, doxorubicin) was evaluated with Zot (0, 1, 2, and 4 μg/mL) using Caco-2 cell monolayers.

Results. Zot was found to be stable over a 10-day period. Significantly higher (p < 0.05) permeability of the molecular weight markers, inulin, and PEG4000 were observed with Zot (4 μg/mL). The transport of each therapeutic marker was significantly increased with paclitaxel displaying a >3-fold enhancement in Papp values with Zot (4 μg/mL). A 30% decrease in transepithelial electrical resistance values was observed, which returned to baseline 30 min after Zot was removed.

Conclusions. Considering the problems of poor oral bioavailability, it is concluded that Zot is a promising drug delivery technology to be used to enhance drug transport across the intestinal mucosa. Future applications are targeted at assessing its usefulness in oral drug delivery using in vivo systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Artursson. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J.Pharm.Sci. 79:476-482 (1990).

    PubMed  Google Scholar 

  2. P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem.Biophys.Res.Commun. 175:880-885 (1991).

    PubMed  Google Scholar 

  3. R. T. Borchardt, P. L. Smith, and G. Wilson. Models for Assessing Drug Absorption and Metabolism, Plenum Press, New York, 1996.

    Google Scholar 

  4. G. T. Knipp, N. F. H. Ho, C. L. Barsuhn, and R. T. Borchardt. Paracellular diffusion in Caco-2 cell monolayers: Effect of perturbation on the transport of hydrophilic compounds that vary in charge and size. J.Pharm.Sci. 86:1105-1110 (1997).

    PubMed  Google Scholar 

  5. H. L. LueBen, C. O. Rentel, A. F. Kotze, C. M. Lehr, A. G. de Boer, J. C. Verhoef, and H. E. Junginger. Mucoadhesive polymers in peroral peptide drug delivery. IV. Polycarbophil and chitosan are potent enhancers of peptide transport across intestinal mucosae in vitro. J.Control.Release 45:15-23 (1997).

    Google Scholar 

  6. M. M. Thanou, A. F. Kotze, T. Scharringhausen, H. L. Lueben, A. G. de Boer, J. C. Verhoef, and H. E. Junginger. Effect of degree of quanternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J.Control.Release 64:15-25 (2000).

    PubMed  Google Scholar 

  7. P. Artursson, T. Lindmark, S. S. Davis, and L. Illum. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2).Pharm.Res. 287:395-402 (1998).

    Google Scholar 

  8. L. Illum, N. F. Farray, and S. S. Davis. Chitosan as a novel nasal delivery system for peptide drugs. Pharm.Res. 11:1186-1189 (1994).

    PubMed  Google Scholar 

  9. T. J. Aspden, T. J. Illum, and O. Skaufrud. Chitosan as a nasal delivery system: Evaluation of insulin absorption enhancement and effect on nasal membrane integrity using rat models. Eur.J.Pharm.Sci. 4:23-31 (1996).

    Google Scholar 

  10. M. Sakai, T. Imai, H. Ohtake, H. Azuma, and M. Otagiri. Effects of absorption enhancers on cytoskeletal actin filaments in caco-2 cell monolayers. Life Sci. 63:45-54 (1998).

    PubMed  Google Scholar 

  11. S. Citi. Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. J.Cell Biol. 117:169-178 (1992).

    PubMed  Google Scholar 

  12. J. Hochman and P. Artursson. Mechanisms of absorption enhancement and tight junction regulation. J.Control.Release 29:253-257 (1994).

    Google Scholar 

  13. A. Fasano, B. Baudry, D. W. Pumplin, S. S. Wasserman, B. D. Tall, J. M. Ketley, and J. B. Kaper. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc.Natl.Acad.Sci.USA 88:5242-5246 (1991).

    PubMed  Google Scholar 

  14. A. Fasano, C. Fiorentini, G. Donelli, S. Uzzau, J. B. Kaper, K. Margaretten, X. Ding, S. Guandalini, L. Comstock, and S. E. Goldblum. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J.Clin.Invest. 96:710-720 (1995).

    PubMed  Google Scholar 

  15. A. Fasano and S. Uzzau. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J.Clin.Invest. 15:1158-1164 (1997).

    Google Scholar 

  16. A. Fasano, S. Uzzau, C. Fiore, and K. Margaretten. The enterotoxic effect of zonula occludens toxin on rabbit small intestine involves the paracellular pathway. Gastroenterology 112:839-846 (1997).

    PubMed  Google Scholar 

  17. D. S. Cox, H. Gao, S. Raje, K. R. Scott, and N. D. Eddington. Enhancing the permeation of marker compounds and enaminone anticonvulsants across Caco-2 monolayers by modulating tight junctions using zonula occludens toxin. Eur.J.Pharm.Biopharm. 52:145-150 (2001).

    PubMed  Google Scholar 

  18. G. Borchard, H. L. Luebem, A. G. De Boer, J. C. Verhoef, C. M. Lehr, and J. E. Junginger. The potentil of mucoadhesive polymers in enhancing intestinal peptide drug absorption III. Effects of chitosam glutamate and carbomer on epithelila tight junctions in vitro. J.Control.Release 39:131-138 (1996).

    Google Scholar 

  19. M. Sakai, T. Imai, H. Ohtake, H. Azuma, and M. Otagiri. Simultaneous use of disodium deoxycholate and dipotassium glycyrrhizinate enhances the cellular transport of poorly absorbed compounds across Caco-2 monolayers. J.Pharm.Pharmacol. 28:27-33 (1998).

    Google Scholar 

  20. B. J. Aungst. Intestinal permeation enhancers. J.Pharm.Sci. 89:429-442 (2000).

    PubMed  Google Scholar 

  21. A. Fasano. Novel approaches for oral delivery of macromolecules. J.Pharm.Sci. 87:1351-1356 (1998).

    PubMed  Google Scholar 

  22. S. Uzzau, R. Lu, W. Wang, C. Fiore, and A. Fasano. Purification and preliminary characterization of the zonula occludens toxin receptor from human (Caco-2) and murine (IEC6) intestinal cell lines. FEMS Microbiol.Lett 194:1-5 (2001).

    PubMed  Google Scholar 

  23. E. K. Anderberg, C. Nystrom, and P. Artusson. Epithelial transport of drugs in cell culture. VII: Effects of pharmaceutical surfactants excipients and bile acids on tranepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. J.Pharm.Sci. 81:879-887 (1991).

    Google Scholar 

  24. A. Adson, T. J. Raub, P. S Burton, C. L. Barsuhn, A. R. Hilgers, K. L. Audus, and N.F.H. Ho. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J.Pharm.Sci. 83:1529-1536 (1994).

    PubMed  Google Scholar 

  25. J. L. Madara, D. Barenberg, and S. Carlsson. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: Further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J.Cell.Biol. 102:2125-2136 (1986).

    PubMed  Google Scholar 

  26. A. F. Kotze, H. L. Lueben. B. J. de leeuw, A. G. de Boer, J. C. Verhoef, and E. D. Junginger. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: In vitro evaluation in intestinal epithelial cells (Caco-2). Pharm.Res. 14:1197-1202 (1997).

    PubMed  Google Scholar 

  27. M. Sakai, T. Imai, H. Ohtake, H. Azuma, and M. Otagiri. Effects of absorption enhancers on the transport of model compounds in Caco-2 cell monolayers: Assessment by confocal laser scanning microscopy. J.Pharm.Sci. 86:779-785 (1997).

    PubMed  Google Scholar 

  28. M. Sakai, T. Imai, H. Ohtake, and M. Otagiri. Cytotoxicity of absorption enhancers in caco-2 cell monolayers. J.Pharm.Pharmacol. 50:1101-1108 (1998).

    PubMed  Google Scholar 

  29. D. Eagland, N. J. Crowther, and C. J. Butler. Interaction of poly-(oxyethylene) with water as a function of molar mass. Polymer 34:2804-2808 (1993).

    Google Scholar 

  30. K. J. Liu and J. L. Parsons. Solvent effect on the preferred conformation of poly(ethylene glycols). Macromolecules 2:529-533 (1969).

    Google Scholar 

  31. H. Ghandehari, P. L. Smith, H. Ellens, P. Yeh, and J. Kopecek. Size-dependent permeability of hydrophillic probes across rabbit colonic epithelium. J.Pharmacol.Exp.Ther. 280:747-753 (1997).

    PubMed  Google Scholar 

  32. A. H. Schinkel, E. Wagenaar, C. A. Mol, and L. van Deemter. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J.Clin.Invest. 97:2517-2524 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie D. Eddington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, D.S., Raje, S., Gao, H. et al. Enhanced Permeability of Molecular Weight Markers and Poorly Bioavailable Compounds Across Caco-2 Cell Monolayers Using the Absorption Enhancer, Zonula Occludens Toxin. Pharm Res 19, 1680–1688 (2002). https://doi.org/10.1023/A:1020709513562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020709513562

Navigation