Skip to main content
Log in

Molecular Pharmacological Dissection of Short- and Long-Term Memory

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. It has been discussed for over 100 years whether short-term memory (STM) is separate from, or just an early phase of, long-term memory (LTM). The only way to solve this dilemma is to find out at least one treatment that blocks STM while keeping LTM intact for the same task in the same animal.

2. The effect of a large number of treatments infused into the hippocampus, amygdala, and entorhinal, posterior parietal or prefrontal cortex on STM and LTM of a one-trial step-down inhibitory avoidance task was studied. The animals were tested at 1.5 h for STM, and again at 24 h for LTM. The treatments were given after training.

3. Eleven different treatments blocked STM without affecting LTM. Eighteen treatments affected the two memory types differentially, either blocking or enhancing LTM alone. Thus, STM is separate from, and parallel to the first hours of processing of, LTM of that task.

4. The mechanisms of STM are different from those of LTM. The former do not include gene expression or protein synthesis; the latter include a double peak of cAMP-dependent protein kinase activity, accompanied by the phosphorylation of CREB, and both gene expression and protein synthesis.

5. Possible cellular and molecular events that do not require mRNA or protein synthesis should account for STM. These might include a hyperactivation of glutamate AMPA receptors, ribosome changes, or the exocytosis of glycoproteins that participate in cell addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alonso, M., Vianna, M. R. M., Depino, A. M., Mello e Souza, T., Pereira, P., Szapiro, G., Viola, H., Pitossi, F., Izquierdo, I., and Medina, J. H. (2002). BDNF-triggered events in the rat hippocampus are required for both short-and long-term memory formation. Hippocampus. 12:201–226.

    Google Scholar 

  • Barros, D. M., Izquierdo, L. A., and Medina, J. H. (2002). Bupropion and sertraline enhances retrieval of fear conditioning acquired one day or many months before. Behav. Pharmacol. 1 4:215–220.

    Google Scholar 

  • Barros, D. M., Mello e Souza, T., Choi, H., DeDavid e Silva, T., Lenz, G., Medina, J. H., and Izquierdo, I. (2001a). LY294002, an inhibitor of phosphoinositide 3-kinase given into rat hippocampus impairs acquisition, consolidation and retrieval of memory for one-trial step-down inhibitory avoidance. Behav. Pharmacol. 1 3:629–634.

    Google Scholar 

  • Barros, D. M., Pereira, P., Medina, J. H., and Izquierdo, I. (2001b). Modulation of working memory and of long-but not short-term memory by cholinergic mechanisms in the basolateral amygdala. Behav. Pharmacol. 1 3:163–167.

    Google Scholar 

  • Beninger, R. J., Dringenberg, H. C., Boegman, R. J., and Jhamandas, K. (2001) Cognitive effects of neurotoxic lesions of the nucleus basalis magnocellularis in rats: Differential roles for corticopetal versus amygdalopetal projections. Neurotox. Res. 3:7–21.

    Google Scholar 

  • Bernabeu, R., Bevilaqua, L., Ardenghi, P., Bromberg, E., Schmitz, P., Bianchin, M., Izquierdo, I., and Medina, J. H. (1997). Involvement of hippocampal D1/D5 receptor—cAMP signaling pathways in a late memory consolidation phase of an aversively-motivated task in rats. Proc. Natl. Acad. Sci. USA 94:7041–7046.

    Google Scholar 

  • Bianchin, M. M., Mello e Souza, T., Medina, J. H., and Izquierdo, I. (1999) The amygdala is involved in the modulation of long-term memory, but not in working, short-and long-term memory. Neurobiol. Learn. Mem.. 71:127–13

    Google Scholar 

  • Cammarota, M., Bernabeu, R., Levi de Stein, M., Izquierdo, I., and Medina, J. H. (1998) Learning-specific, time-dependent increases in hippocampal Cap2C/ calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Eur. J. Neurosci. 1 0:2669–2676.

    Google Scholar 

  • Cammarota, M., Bevilaqua, L. R., Ardenghi, P., Paratcha,G., Levi de Stein, M., Izquierdo, I., and Medina, J. H. (2000). Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: Abolition byNMDAreceptor blockade. Brain Res. Mol. Brain Res. 76:36–46.

    Google Scholar 

  • Emptage, N. J., and Carew, T. J. (1993). Long-term facilitation in the absence of short-term facilitation in Aplysia neurons. Science 2 62:253–256.

    Google Scholar 

  • Frey, J.U., and Morris,R.G.M. (1998). Synaptic tagging: Implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21:181–187.

    Google Scholar 

  • Geinisman, Y. (in press). Learning-induced alterations in synaptic ultrastructure. In Riedel, G., and Platt, B. (eds.), Cellular Mechanisms in Memory Formation, Elsevier, Cambridge. Gold, P. (1986). The use of avoidance training in studies of modulation of memory storage. Behav. Neural Biol. 4 6:87–98.

  • Gold, P. E., and McGaugh, J. L. (1975). A single-trace, two-process view of memory storage processes. In Deutsch,D., and Deutsch, J. A. (eds.), Short-Term Memory, Academic Press, New York, pp. 355–378.

  • Goldman-Rakic, P. (1991). Prefrontal cortical dysfunction in schixophrenia: The relevance of working memory. In Carroll, B. J., and Barrett, J. E. (eds.), Psychopathology and the Brain, Raven Press, New York, pp. 1–23.

  • Goldman-Rakic, P. (1996). Regional and cellular fractionation of working memory. Proc. Natl. Acad. Sci. USA 9 3:13473–13480.

    Google Scholar 

  • Grecksch, G., and Matthies, H. (1980). Two sensitive periods for the amnesic effect of anisomycin. Pharmacol. Biochem. Behav. 1 2:663–665.

    Google Scholar 

  • Hermitte, G., Pedreira, M. E., Tomsic, D., and Maldonado, H. (1999). Context shift and protein synthesis inhibition disrupt long-term habituation in the crab Chasmagnathus. Neurobiol. Learn. Mem. 71:234– 249.

  • Izquierdo, L. A., Barros,D. M., Medina, J. H., and Izquierdo, I. (in press-a). Exposure to novelty enhances retrieval of very remote memory in rats. Neurobiol. Learn. Mem. 77.

  • Izquierdo, I. (1995). Retrograde messengers, long-term potentiation, and memory processes. Brain Res. Revs. 2 1:185–194.

    Google Scholar 

  • Izquierdo, I., Barros,D. M., Mello e Souza, T., de Souza, M. M., Izquierdo, L. A., and Medina, J. H. (1998a). Mechanisms for memory types differ. Nature 3 93:635–636.

    Google Scholar 

  • Izquierdo, I., Izquierdo, L. A., Barros, D. M., Mello e Souza, T., de Souza, M. M., Quevedo, J., Rodrigues, C., Sant'Anna, M. K., Madruga, M., and Medina, J. H. (1998b). Differential involvement of cortical receptor mechanisms in working, short-and long-term memory. Behav. Pharmacol. 9:421–427.

    Google Scholar 

  • Izquierdo, I., and McGaugh, J. L. (2000). Behavioural pharmacology and its contribution to the molecular basis of memory consolidation. Behav. Pharmacol. 1 1:517–534.

    Google Scholar 

  • Izquierdo, I., and Medina, J. H. (1997). Memory formation: The sequence of biochemical events in the hippocampus and its connections to activity in other brain structures. Neurobiol. Learn. Mem. 6 8:285– 316.

  • Izquierdo, I., and Medina, J. H. (1998). On brain lesions, the milkman and Sigmunda, Trends Neurosci. 21:423–426.

    Google Scholar 

  • Izquierdo, I., Medina, J. H., Izquierdo, L. A., Barros, D. M., de Souza, M. M., and Mello e Souza, T. (1998c). Short-and long-term memory are differentially regulated by monoaminergic systems in the rat brain. Neurobiol. Learn. Mem. 6 9:219–224.

    Google Scholar 

  • Izquierdo, L. A., Vianna, M. R. M., Barros, D. M., Mello e Souza, T., Ardenghi, P. G., Sant'Anna, M. K., Rodrigues, C., Medina, J. H., and Izquierdo, I. (2000) Short-and long-term memory are differentially affected by metabolic inhibitors given into hippocampus and entorhinal cortex. Neurobiol. Learn. Mem. 7 3:141–149.

    Google Scholar 

  • Izquierdo, I., Vianna, M. R. M., Izquierdo, L. A., Barros, D. M., Szapiro, G., Coitinho, A. S., M¨ uller, L., Cammarota, M., Bevilaqua, L. R., and Medina, J. H. (in press-b). Memory retrieval and its lasting consequences. Neurotox. Res.

  • Jacobsen, C. F. (1936). Studies of cerebral function in primates. Comp. Psychol. Monogr. 1 3:1–68. James,W. (1890). The Principles of Psychology, Holt, New York.

    Google Scholar 

  • Jones, T. A., Klintsova, A. Y., Kilman, V. L., Sirevaag, A. M., and Greenough, W. T. (1997). Induction of multiple synapses by experience in the visual cortex of adult rats. Neurobiol. Learn. Mem. 6 8:13– 20.

  • Klein, J. A., Swain, R. A., Armstrong, K. A., Napper, R. M., Jones, T. A., and Greenough, W. T. (1998). Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol. Learn. Mem. 6 9:274–289.

    Google Scholar 

  • Klintsova, A. Y., and Greenough,W. T. (1999). Synaptic plasticity in cortical systems. Curr. Opin. Neurobiol. 9:203–208.

    Google Scholar 

  • Locatelli, F., Maldonado, H., and Romano, A. (2002). Two critical periods for cAMP-dependent protein kinase activity during long-term memory consolidation in the crab Chasmagnathus. Neurobiol. Learn. Mem. 7 7:234–249.

    Google Scholar 

  • Markowitsch, H. J. (1997). Varieties of memory systems, structures, mechanisms of disturbance. Neurol. Psychiatr. Brain Res. 2:49–68.

    Google Scholar 

  • Martin, J. H. (1991). Autoradiographic estimationof the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat. Neurtosci. Lett. 1 27:160–164.

    Google Scholar 

  • Matthies, H. (1982). Plasticity in the nervous system—An approach to memory research. In Ajmone-Marsan, C., and Matthies, H. (eds.), Neuronal Plasticity and Memory Formation, Raven Press, New York, pp. 1–16.

  • McGaugh, J. L. (1966). Time-dependent processes in memory storage. Science 1 53:1351–1359.

    Google Scholar 

  • McGaugh, J. L. (2000). A century of memory consolidation. Science 2 87:248–251.

    Google Scholar 

  • Medina, J. H., Schr ¨ oder, N., and Izquierdo, I. (1999). Two different properties of short-and long-term memory. Behav. Brain Res. 1 03:119–121.

    Google Scholar 

  • Murphy, K. J., and Regan, C. M. (1998). Contributions of cell adhesion molecules to altered synaptic weightings during memory consolidation. Neurobiol. Learn. Mem. 7 0:73–81.

    Google Scholar 

  • Ni Dhuill, C. M., Fox, G. N., Pittock, S. J., O'Connell, A. W., Murphy, K. J., and Regan, C. M. (1999). Polisialylated neural cell adhesion molecule expression in the dentate gyrus of the human hippocampal formation from infancy to old age. J. Neurosci. Res. 5 5:99–106.

    Google Scholar 

  • O'Connell, C., Gallagher,H. C., O'Malley, A., Bourke, M., and Regan, C. (2000), CREB phosphorylation coincides with transient synapse formation in the rat hippocampal dentate gyrus following avoidance learning. Neural Plast. 7:279–289.

    Google Scholar 

  • O'Connell, C., O'Malley, A., and Regan, C. M. (1997). Transient learning-induced ultrastructural change in spatially-clustered dentate granule cells of the adult rat hippocampus. Neuroscience 7 6:55– 62.

  • O'Malley, A., O'Connell, C., Murphy, K. J., and Regan, C. M. (2000). Transient spine density increases in mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent. Neuroscience 9 9:229–232.

    Google Scholar 

  • O'Malley, A., O'Connell, C., and Regan, C. M. (1998). Ultrastructural analysis reveals avoidance conditioning to induce a transient increase in hippocampal dentate spine density in the 6 hour posttraining period of consolidation. Neuroscience 8 7:607–613.

    Google Scholar 

  • Pereira, P., Ardenghi, P. G., de Souza, M. M., Choi, H., Moletta, B., and Izquierdo, I. (2001a). Effects of infusions of the tyrosine kinase inhibitor radicicol into the hippocampus on short-and long-term memory of the inhibitory avoidance task. Behav. Pharmacol. 1 2:299–302.

    Google Scholar 

  • Pereira, P., Ardenghi, P. G., Mello e Souza, T., Medina, J. H., and Izquierdo, I. (2001b) Training in the step-down inhibitory avoidance task time-dependently increases cAMP-dependent protein kinase activity in the entorhinal cortex. Behav. Pharmacol. 1 2:217–220.

    Google Scholar 

  • Ram´on y Cajal, S. (1893). Neue Darstellung vom histologischen Bau des Zentralnerv ¨ os System. Arch. Anat. Physiol. (Anat.) 319–328.

  • Rose, S. P. R. (2001). Time-dependent processes in memory formation revisited. In Gold, P. E., and Greenough,W. T. (eds.), Memory Consolidation, American Psychological Association,Washington, pp. 113–128.

  • Routtenberg,A. (2001). It's about time. In Gold,P. E., and Greenough,W.T. (eds.),MemoryConsolidation, American Psychological Association, Washington, pp. 17–34.

  • Sergueeva, O. A., Fedorov, N. B., and Reymann, K. G. (1993). An antagonist of glutamate metabotropic receptors, (R)-methyl carboxyphenyl glycine, prevents the LTP-related increase in postsynaptic AMPA sensitivity in hippocampal slices. Neuropharmacology 3 2:933– 935.

  • Squire,L.R. (1992).Memoryand the hippocampus:Asynthesis of findings with rats, monkeys and humans. Psychol. Rev. 9 9:195–221.

    Google Scholar 

  • Sutton, M. A., Ide, J., Masters, S. E., and Carew, T. J. (2002). Interaction between amount and pattern of graining in the induction of intermediate and long-term memory for sensitization in Aplysia. Learn. Mem. 9:21–40.

    Google Scholar 

  • Sutton, M. A., Masters, S. E., Bagnall, M. W., and Carew, T. J. (2001). Molecular mechanisms underlying a unique intermediate phase of memory in aplysia. Neuron 1 9:143–154.

    Google Scholar 

  • Taubenfeld, S. M.,Wiig, K. A., Bear,M. F., and Alberini, C. M. (1999). A molecular correlate of memory and amnesia in the hippocampus. Nat. Neurosci. 2:309–310.

    Google Scholar 

  • Vianna, M. R. M., Barros, D. M., Silva, T., Choi, H., Madche, C., Rodrigues, C., medina, J. H., and Izquierdo, I. (2000a). Pharmacological demonstration of the differential involvenent of protein kinase c isoforms in short-and long-term memory formation and retrieval of one-trial avoidance in rats. Psychopharmacology 1 50:77–84.

    Google Scholar 

  • Vianna, M. R. M., Izquierdo, L. A., Barros, D. M., Ardenghi, P., Pereira, P., Rodrigues, C., Moletta, B., Medina, J. H., Izquierdo, I. (2000b). Differential role of hippocampal protein kinase A in short-and long-term memory. Neurochem. Res. 2 5:621–626.

    Google Scholar 

  • Vianna, M. R. M., Izquierdo, L. A., Barros, D. M., Medina, D. M., and Izquierdo, I. (1999). Intrahippocampal infusion of an inhibitor of protein kinase A separates short-from long-term memory. Behav. Pharmacology 1 0:223–228.

    Google Scholar 

  • Vianna, M. R. M., Szapiro,G., McGaugh, J. L., Medina, J. H., and Izquierdo, I. (2001). Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc. Natl. Acad. Sci. USA 9 8:12251–12254.

    Google Scholar 

  • Walz, R., Roesler, R., Barros,D. M., de Souza, M. M., Rodrigues, C., Sant'Anna, M. K., Quevedo, J., Choi, H. K., Neto,W. P., deDavid e Silva, T., Medina, J. H., and Izquierdo, I. (1999). Effects of post-training infusions of a mitogen-activated protein kinase inhibitor into the hippocampus or entorhinal cortex on short-and long-term retention of inhibitory avoidance. Behav. Pharmacol. 1 0:723–730.

    Google Scholar 

  • Weiler, I. J., Hawrylak, N., and Greenough,W. T. (1995). Morphogenesis in memory formation: Synaptic and cellular mechanisms. Behav. Brain Res. 6 6:1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izquierdo, L.A., Barros, D.M., Vianna, M.R.M. et al. Molecular Pharmacological Dissection of Short- and Long-Term Memory. Cell Mol Neurobiol 22, 269–287 (2002). https://doi.org/10.1023/A:1020715800956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020715800956

Navigation