Skip to main content
Log in

The Expression of Several Mitochondrial and Nuclear Genes Encoding the Subunits of Electron Transport Chain Enzyme Complexes, Cytochrome c Oxidase, and NADH Dehydrogenase, in Different Brain Regions in Alzheimer's Disease

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this study, changes of the expression of two mitochondrial and two nuclear genes encoding the subunits of cytochrome c oxidase (CO) and NADH dehydrogenase (ND) were studied in the hippocampus, inferior parietal lobule, and cerebellum of 10 Alzheimer's disease (AD) and 10 age-matched control subjects. The altered proportion between CO II and CO IV mRNAs was observed in the AD brain. Changes of the proportion between CO II and CO IV transcripts may contribute to the kinetic perturbation of CO documented in AD. A coordinated decrease of ND4 and ND15 mRNAs was found in the AD hippocampus and inferior parietal lobule, but not in cerebellum. The decrease of ND4 gene expression may lead to the inhibition of normal ubiquinone oxidoreductase activity of ND. This study suggests that changes of the expression of mitochondrial and nuclear genes, encoding parts of ND and CO enzyme complexes, may contribute to alterations of oxidative metabolism in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Harman, D. 1995. Free radical theory of aging: Alzheimer's disease pathogenesis. Age 18:97–119.

    Google Scholar 

  2. Bowling, A. C., and Beal, M. F. 1995. Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sciences. 56:1151–1171.

    PubMed  Google Scholar 

  3. Butterfield, D. A. 1997. β-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's disease. Chem. Res. Toxicol. 10:495–506.

    PubMed  Google Scholar 

  4. Markesbery, W. R. 1997. Oxidative stress hypothesis in Alzheimer's disease. Free Radic. Biol. Med. 23:134–147.

    PubMed  Google Scholar 

  5. Parker, W. D. Jr., Parks, J., Filley, C. M., and Kleinschmidt-Demasters, B. K. 1994. Electron transport chain defects in Alzheimer's disease brain. Neurology. 44:1090–1096.

    PubMed  Google Scholar 

  6. Mutisya, E. M., Bowling, A. C., and Beal, M. F. 1994. Cortical cytochrome oxidase activity is reduced in Alzheimer's disease. J. Neurochem. 63:2179–2184.

    PubMed  Google Scholar 

  7. Beal, M. F. 1996. Mitochondria, free radicals, and neurodegeneration. Curr. Opin. Neurobiol. 6:661–666.

    PubMed  Google Scholar 

  8. Wong-Riley, M., Antuono, P., Ho, K. C., Egan, R., Hevner, R., Liebl, W., Huang, Z., Rachel, R., and Jones, J. 1997. Cytochrome oxidase in Alzheimer's disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems. Vision Res. 37:3593–3608.

    PubMed  Google Scholar 

  9. Sheenan, J. P., Swerdlow, R. H., Miller, S. W., Davis, R. E., Parks, J. K., Parker, W. D., and Tuttle, J. B. 1997. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer's disease. J. Neurosci. 17:4612–4622.

    PubMed  Google Scholar 

  10. Parker, W. D. Jr., Filley, C. M., and Parks, J. K. 1990. Cytochrome oxidase deficiency in Alzheimer's disease. Neurology. 40: 1302–1303.

    PubMed  Google Scholar 

  11. Chandrasekaran, K., Hatanpaa, K., Brady, D. R., and Rapoport, S.I. 1996. Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer's disease. Exp. Neurol. 142:80–88.

    PubMed  Google Scholar 

  12. Rapoport, S. I., Hatanpaa, K., Brady, D. R., and Chandrasekaran, K. 1996. Brain energy metabolism, cognitive function and down-regulated oxidative phosphorylation in Alzheimer disease. Neurodegeneration. 5:473–476.

    PubMed  Google Scholar 

  13. Kish, S. J. 1997. Brain energy metabolizing enzymes in Alzheimer's disease: alpha-ketoglutarate dehydrogenase complex and cytochrome oxidase. Ann. NY Acad. Sci. 826:218–228.

    PubMed  Google Scholar 

  14. Meier-Ruge, W. A., and Bertoni-Freddari, C. 1997. Pathogenesis of decreased glucose turnover and oxidative phosphorylation in ischemic and trauma-induced dementia of the Alzheimer type. Ann. NY Acad. Sci. 826:229–241

    PubMed  Google Scholar 

  15. Fukuyama, R., Hatanpaa, K., Rapoport, S. I., and Chandrasekaran, K. 1996. Gene expression of ND4, a subunit of complex I of oxidative phosphorylation in mitochondria, is decreased in temporal cortex of brains of Alzheimer's disease patients. Brain Res. 713:290–293.

    PubMed  Google Scholar 

  16. Chandrasekaran, K. Hatanpaa, K., Rapoport, S.I., and Brady, D. R. 1997. Decreased, expression of nuclear and mitochondrial DNA-encoded genes of oxidative phosphorylation in association neocortex in Alzheimer disease. Mol. Brain Res. 44: 99–104.

    PubMed  Google Scholar 

  17. Davey, G.P., Peuchen, S., and Clark, J. B. 1998. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J. Biol. Chem. 273:12753–12757.

    PubMed  Google Scholar 

  18. Kish, S. J, Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, F., Chang, L. J., Wilson, J. M., DiStefano, L. M., and Nobrega, J.N. 1992. Brain cytochrome oxidase in Alzheimer's disease. J. Neurochem. 59:776–779.

    PubMed  Google Scholar 

  19. Simonian, N. A., and Hyman, B. T. 1993. Functional alterations in Alzheimer's disease: diminution of cytochrome oxidase in the hippocampal formation. J. Neuropathol. Exp. Neurol. 52:580–585.

    PubMed  Google Scholar 

  20. Changnon, P., Betard, C., Robitaille, Y., Cholette, A., and Gauvreau, D. 1995. Distribution of brain cytochrome oxidase activity in various neurodegenerative diseases. Neuroreport. 6: 711–715.

    PubMed  Google Scholar 

  21. Gonzalez-Lima, F., Valla, J., and Matos-Collazo, S. 1997. Quantitative cytochemistry of cytochrome oxidase and cellular morphometry of the inferior colliculus in control and Alzheimer's patients. Brain Res. 758:117–126.

    Google Scholar 

  22. Schagger, H., and Ohm, T. G. 1996. Human diseases with defects in oxidative phosphorylation. 2. F1F0 ATP-synthase defects in Alzheimer disease revealed by blue native polyacrylamide electrophoresis Eur. J. Biochem. 227:916–921.

    Google Scholar 

  23. Simonian, N. A., and Hyman, B. T. 1994. Functional alterations in Alzheimer's disease: Selective loss of mitochondrial-encoded cytochrome oxidase mRNA in the hippocampal formation. J. Neuropathol. Exp. Neurol. 53:508–512.

    PubMed  Google Scholar 

  24. Parker, W. D. Jr., and Parks, J. K. 1995. Cytochrome c oxidase in Alzheimer's disease brain: purification and characterization. Neurology. 45:482–486.

    PubMed  Google Scholar 

  25. Davis, R. E., Miller, S., Herrnstadt, C., Ghosh, S. S., Fahy, E., Shinobu, L. A., Galasko, D., Thal, L. J., Beal, M. F., Howell, N., and Parker, W. D. Jr. 1997. Mutations in mitochondrial cytochrome c oxidase genes segregated with late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA. 94:4526–4531.

    PubMed  Google Scholar 

  26. Haycock, J. W., Jones, P., Harris, J. B., and Mantle, D. 1996. Differential susceptibility of human skeletal muscle proteins to free radical induced oxidative damage: a histochemical, immunocytochemical and electron microscopical study in vitro. Acta Neuropathol. (Berl.) 92:331–340.

    Google Scholar 

  27. Calpaldi, R. A. Structure and assembly of cytochrome c oxidase. 1990. Arch. Biochem. Biophys. 280:252–262.

    PubMed  Google Scholar 

  28. Cooper, C. E., Nicholls, P., and Freedman, J. A. 1991. Cytochrome c oxidase: structure, function, and membrane topology of the polypeptide subunits. Biochem. Cell Biol. 69: 586–607.

    PubMed  Google Scholar 

  29. Walker, J. E., Arizmendi, J. M., Dupuis, A., Fearnley, I. M., Finel, M., Medd, S. M., Pilkington, S. J., RUnswick, M. J., and Skehel, J. M. 1992. Sequences of 20 subunits of NADH: ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J. Mol. Biol. 226:1051–1072.

    PubMed  Google Scholar 

  30. Van den Bogert, C., De Vries, H., Holtrop, M., Muus, P., Dekker, H. L., Van Galen, M. J., Bolhuis, P. A., and Taanman, J. W. 1993. Regulation of the expression of mitochondrial proteins: relationship between mtDNA copy number and cytochrome-c oxidase activity in human cells and tissues. Biochim. Biophys. Acta. 1144:177–183.

    PubMed  Google Scholar 

  31. Nie, F., and Wong-Riley, M. T. 1996. Mitochondrial-and nuclear-encoded subunits of cytochrome oxidase in neurons: differences in compartmental distribution, correlation with enzyme activity, and regulation by neuronal activity. J. Comp. Neurol. 373:139–155.

    PubMed  Google Scholar 

  32. Selkoe, D. J. 1991. The molecular pathology of Alzhemer's disease. Neuron. 61:487–498.

    Google Scholar 

  33. Lewis, P. N., Lukiw, W. J., De Boni, U., and Crapper McLachlan, D. R. 1981. Changes in chromatin structure associated with Alzheimer's disease. J. Neurochem. 37:1193–1202.

    PubMed  Google Scholar 

  34. Knezetic, J. A., and Luse, D. S. 1986. The presence of nucleosomes on a DNA template prevents initiation by RNA II polymerase in vitro. Cell. 45:95–104.

    PubMed  Google Scholar 

  35. Mecocci, P., Beal, M. F., Cecchetti, R., Polidori, M. C., Cherubini, A., Chionne, F., Avellini L., Romano, G., and Senin, U. 1997. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol. Chem. Neuropathol. 31:53–64.

    PubMed  Google Scholar 

  36. Mecocci, P., MacGarvey, U., and Beal, M. F. 1994. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann. Neurol. 36:747–751.

    PubMed  Google Scholar 

  37. Gabbita, S. P., Lovell, M. A., and Markesbery, W. R. 1998. Increased nuclear DNA oxidation in the brain in Alzheimer's disease. J. Neurochem. 71:2034–2090.

    PubMed  Google Scholar 

  38. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D. and Stadlan, E. M. 1984. Clinical diagnosis of Alzheimer's disease: report of the NINCDS ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology. 34:939–944.

    PubMed  Google Scholar 

  39. Khachaturian, Z. S. 1985. Diagnosis of Alzheimer's disease. Arch. Neurol. 42:1097–1105.

    PubMed  Google Scholar 

  40. Mirra, S. S., Heyman, A., and McKeel, D. 1991. The Consorcium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standartization of the neuropathologic assessment of Alzheimer's disease. Neurology. 41:479–486.

    PubMed  Google Scholar 

  41. National Institute on Aging and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's disease. 1997. Consensus Recommendations. Neurobiol. Aging. S1-S2.

  42. Chromzynski, P., and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloro-form extraction. Anal. Biochem. 162:156–159.

    PubMed  Google Scholar 

  43. Manniatis T., Fritsch E. F., and Sambrook J. 1982. A Laboratory Manual. Molecular Cloning, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  44. Estus, S. 1997. Optimization and validation of RT-PCR as a tool to analyze apoptotic gene expression, Pages 67–84, in Poirier J., (ed.), NeuroMethods 29: Apoptosis techniques and protocols. Humana, Totowa, NJ.

  45. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.

    Article  PubMed  Google Scholar 

  46. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Droin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, J. G. 1981. Sequence and organization of the human mitochondrial genome. Nature. 290:457–465.

    PubMed  Google Scholar 

  47. Capitanio, N., Peccarisi, R., Capitanio., G., Villani, G., De Nitto, E., Scacco, S., and Papa, S. 1994. Role of nuclear-encoded subunits of mitochondrial. Biochemistry. 33:12521–12526.

    PubMed  Google Scholar 

  48. Saiki, K., Nakamura, H., Mogi, T., and Anraku, Y. 1996. Probing a role of subunit of the Escherichia coli bo-type ubiquinol oxidase by deletion and cross-linking analyses. J. Biol. Chem. 271:15336–15340.

    PubMed  Google Scholar 

  49. Hirano, M., Shtilbans, A., Mayeux, R., Davidson, M. M., Di-Mauro, S., Knowles, J. A., and Schon, E. A. 1997. Apparent mtDNA heteroplasmy in Alzheimer's disease patients and normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes. Proc. Natl. Acad. Sci. USA. 94:14894–14899.

    PubMed  Google Scholar 

  50. Hofhaus, G., Attardi, G. 1993. Lack of assembly of mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase and loss of enzyme activity in human cell mutant lacking the mitochondrial ND4 gene product. EMBO J. 12:3043–3048.

    PubMed  Google Scholar 

  51. Crawford, D. R., Wang, Y., Schools, G. P., Kochheiser, J., Davies, K. J. 1997. Down-regulation of mammalian mitochondrial RNAs during oxidative stress. Free Radio. Biol. Med. 22:551–559.

    Google Scholar 

  52. Sajdel-Sulkowska, E. M., Marotta, C. A. 1984. Alzheimer's disease brain: alterations in RNA levels and in a ribonuclease-inhibitor complex. Science. 225:947–949.

    PubMed  Google Scholar 

  53. Taylor, G. R., Carte, G. I., Grow, T. J., Johnson, J. A., Fairbairn, A. F., Perry, E. K, Perry, R. H. 1986. Recovery and measurement of specific RNA species from postmortem brain tissue: A general reduction in Alzheimer's disease detected by molecular hybridization. Exp. Mol. Pathol. 44:111–116.

    PubMed  Google Scholar 

  54. Guillemette, J. G., Wong, L., Crapper McLachlan, D. R., Lewis, P. N. 1987. Characterization of messenger RNA from the cerebral cortex of control and Alzheimer-afflicted brain. J. Neurochem. 47:987–997.

    Google Scholar 

  55. Crapper McLachlan, D. R., Lukiw, W. J., Wong, L., Bergeron, C., Bech-Hansen, N. T. 1988. Selective messenger RNA reduction in Alzheimer-s disease. Mol. Brain Res. 15:681–690.

    Google Scholar 

  56. Aksenov, M. Y., Tucker, H. M., Nair, P., Aksenova, M. V., Butterfield, D. A., Estus, S., and Markesbery, W. R. 1999. The expression of key oxidative stress-handling genes in different brain regions in Alzheimer's disease. J. Mol. Neurosci. 11:151–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksenov, M.Y., Tucker, H.M., Nair, P. et al. The Expression of Several Mitochondrial and Nuclear Genes Encoding the Subunits of Electron Transport Chain Enzyme Complexes, Cytochrome c Oxidase, and NADH Dehydrogenase, in Different Brain Regions in Alzheimer's Disease. Neurochem Res 24, 767–774 (1999). https://doi.org/10.1023/A:1020783614031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020783614031

Navigation