Skip to main content
Log in

Optimal Motion Synthesis – Dynamic Modelling and Numerical Solving Aspects

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A general approach for generating optimal movements of actuatedmulti-jointed systems is presented. The method is based on theimplementation of the Pontryagin Maximum Principle (PMP) used as amathematical optimization tool. It applies to mechanical systems withkinematic tree-like topology such as serial robots, walking machines,and articulated biosystems. Emphasis is put on the choice of anappropriate dynamic model of the multibody system, together with thechoice of relevant performance criteria to be minimized for generatingthe optimal motion. It is shown that the Hamiltonian formalism isperfectly suitable to deal with the optimization problem using the PMP.On the other hand, prominence is given to performance criteria ensuringsoft and efficient functioning of the articulated systems. Two computingtechniques for solving the optimization problem are presented. Threenumerical simulations demonstrate the applicability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bobrow, J.E., Dubowsky, S. and Gibson, J.S., 'On the optimal control of robotic manipulators with actuator constraints', in Proceedings of the American Control Conference, San Francisco, CA, 1983, 782-787.

  2. Bobrow, J.E., Dubowsky S. and Gibson, J.S., 'Time optimal control of robotic manipulators along specified paths', International Journal of Robotic Research 4, 1985, 3-17.

    Google Scholar 

  3. Shiller, Z. and Dubowsky, S., 'On the optimal control of robotic manipulators with actuator and end-effector constraints', in Proceedings IEEE International Conference on Robotics and Automation, IEEE, New York, 1985, 614-620.

    Google Scholar 

  4. Shiller, Z. and Dubowsky, S., 'Robot path planning with obstacles, actuator, gripper and payload constraints', International Journal of Robotics Research 8, 1989, 3-18.

    Google Scholar 

  5. Shin, K.G. and McKay, N.D., 'Minimum-time control of robotic manipulators with geometric path constraints', IEEE Transactions on Automatic Control 30(6), 1985, 531-541.

    Google Scholar 

  6. Shin, K.G. and McKay, N.D., 'Minimum cost trajectory planning for industrial robots', Control and Dynamic Systems 9, 1991, 345-403.

    Google Scholar 

  7. Pfeiffer, F. and Johanni, R., 'A concept for manipulator trajectory planning', in Proceedings IEEE International Conference on Robotics and Automation, San Francisco, CA, April 7-10, IEEE, New York, 1986, 1139-1405.

    Google Scholar 

  8. Slotine, J.J.E. and Yang, H.S., 'Improving the efficiency of time optimal path following algorithms', IEEE Transactions on Robotics and Automation 5, 1989, 118-124.

    Google Scholar 

  9. Shiller, Z. and Dubowsky, S., 'On computing the global time-optimal motions of robotic manipulators in the presence of obstacles', IEEE Transactions on Robotics and Automation 7, 1991, 785-797.

    Google Scholar 

  10. Shiller, Z., 'Optimal robot motion planning and work-cell layout design', Robotica 15, 1997, 31-40.

    Google Scholar 

  11. Beletskii, V.V. and Chudinov, P.S., 'Parametric optimization in the problem of biped locomotion', Izvestiya Akademii Nauk SSSR Mekhanika Tverdogo Tela 12, 1977, 22-31.

    Google Scholar 

  12. Channon, P.H., Hopkins, S.H. and Pham, D.T., 'Derivation of optimal walking motions for a bipedal walking robot', Robotica 10, 1992, 165-172.

    Google Scholar 

  13. Chevallereau, C. and Aoustin, Y., 'Optimal reference trajectories for walking and running of a biped robot', Robotica 19, 2001, 557-569.

    Google Scholar 

  14. Schmitt, D., Soni, A.H., Srinivasan, V. and Naganathan, G., 'Optimal motion planning of robot manipulators', Journal of Mechanisms, Transmissions, and Automation in Design 107, 1985, 239-244.

    Google Scholar 

  15. Yamamoto, M., Ozaki, H. and Mohri, A. 'Planning of manipulator joint trajectories by an iterative method', Robotica 6, 1988, 101-105.

    Google Scholar 

  16. Martin, B.J. and Bobrow, J.E., 'Minimum effort motions for open chains manipulators with task-dependent end-effector constraints', International Journal of Robotics Research 18, 1999, 213-324.

    Google Scholar 

  17. Wang, C.-Y.E., Bobrow, J.E. and Reinkensmeyer, D. J., 'Swinging fromthe hip: Use of dynamic motion optimization in the design of robotic gait rehabilitation', in Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea, May 21-26, IEEE, New York, 2001, 1433-1438.

    Google Scholar 

  18. Kahn, M.E. and Roth, B., 'The near-minimum-time control of open-loop articulated kinematic chains', ASME Journal of Dynamic Systems, Measurement, and Control, September 1971, 164-172.

  19. Weinreb, A. and Bryson, A.E., 'Optimal control of systems with hard control bounds', IEEE Transactions on Automatic Control 30(11), 1985, 1135-1138.

    Google Scholar 

  20. Geering, H.P., Guzella, L., Hepner, S.A.R. and Onder, C.H., 'Time-optimal motions of robots in assembly tasks', IEEE Transactions on Automatic Control 31(6), 1986, 512-518.

    Google Scholar 

  21. Chen, Y. and Desrochers, A.A., 'A proof of the structure of the minimum-time control law of robotic manipulators using a Hamiltonian formulation', IEEE Transactions on Robotics and Automation 6(3), 1990, 388-393.

    Google Scholar 

  22. Bessonnet, G. and Lallemand, J.P., 'Optimal trajectories of robot arms minimizing constrained actuators and traveling time', in IEEE International Conference on Robotics and Automation, Cincinnati, OH, IEEE, New York, 1990, 112-117.

    Google Scholar 

  23. Galicki, M., 'The planning of robotic optimal motions in the presence of obstacles', International Journal of Robotic Research 17, 1998, 248-259.

    Google Scholar 

  24. Galicki, M. and Ucinski, D., 'Time-optimal motions of robotic manipulators', Robotica 18, 2000, 659-667.

    Google Scholar 

  25. Lewis, F.L. and Syrmos, V.L., Optimal Control, John Wiley & Sons, New York, 1995.

    Google Scholar 

  26. Pontryagin, L., Boltiansky, V., Gamkrelitze, A. and Mishchenko, E., The Mathematical Theory of Optimal Processes, Wiley Intersciences, New York, 1962.

    Google Scholar 

  27. Bryson, A.E. and Ho, Y.C., Applied Optimal Control, Hemisphere, New York, 1975.

    Google Scholar 

  28. Ioffe, A.D. and Tihomirov, V.M., Theory of Extremal Problems, North-Holland, Amsterdam, 1979.

    Google Scholar 

  29. Skowronski, J.M., Control Dynamics of Robotic Manipulators, Academic Press, Orlando, FL, 1986.

    Google Scholar 

  30. Flashner, H. and Skowronski, J.M., 'Model tracking control of Hamiltonian systems', ASME Journal of Dynamic Systems, Measurement, and Control 111, 1989, 656-660.

    Google Scholar 

  31. Bessonnet, G., Sardain, P. and Danes, F., 'Reducing high order derivations to algebraic operations in dynamic modelling for motion optimization purpose', in Proceedings of 15th IMACS World Congress on Scientific Computer Modelling and Applied Mathematics, A. Sydow (ed.), Wissenschaft & Technik Verlag, Berlin, 1997, 337-342.

    Google Scholar 

  32. NAG Fortran Library, Routine D02RAF, 1992.

  33. Pereyra V., 'Pasva 3: An adaptative finite difference fortran program for the first order nonlinear, ordinary boundary problem', in Codes for Boundary Value Problems in Ordinary Differential Equations, Lecture Notes in Computer Science, Vol. 76 B. Childs, M. Scott, J.W. Daniel, E. Denman and P. Nelson (eds), Springer-Verlag, Berlin, 1979, 67-88.

    Google Scholar 

  34. Danes, F., 'Critères et contraintes pour la synthèse optimale des mouvements de robots manipulateurs. Application à l'évitement d'obstacles', Ph.D. Thesis, University of Poitiers, France, 1998.

    Google Scholar 

  35. Blajer, W. and Schiehlen, W., 'Walking without impacts as a motion/force control problem', ASME Journal of Dynamic Systems, Measurement, and Control 114, 1992, 660-665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessonnet, G., Sardain, P. & Chessé, S. Optimal Motion Synthesis – Dynamic Modelling and Numerical Solving Aspects. Multibody System Dynamics 8, 257–278 (2002). https://doi.org/10.1023/A:1020928112173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020928112173

Navigation