Skip to main content
Log in

Reduction of Na+,K+-ATPase Activity in Hippocampus of Rats Subjected to Chemically Induced Hyperhomocysteinemia

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia occurs in homocystinuria, an inherited metabolic disease clinically characterized by thromboembolic episodes and a variable degree of neurological dysfunction whose pathophysiology is poorly known. In this study, we induced elevated levels of homocysteine (Hcy) in blood (500 μM), comparable to those of human homocystinuria, and in brain (60 nmol/g wet tissue) of young rats by injecting subcutaneously homocysteine (0.3-0.6 μmol/g of body weight) twice a day at 8-hr intervals from the 6th to the 28th postpartum day. Controls received saline in the same volumes. Na+,K+-ATPase and Mg2+-ATPase activities were determined in the hippocampus of treated Hcy- and saline-treated rats. Chronic administration of Hcy significantly decreased (40%) Na+,K+-ATPase activity but did not alter Mg2+-ATPase activity. Considering that Na+,K+-ATPase plays a crucial role in the central nervous system, our results suggest that the brain dysfunction found in homocystinuria may be related to the reduction of brain Na+,K+-ATPase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Boushey, C. J., Beresford, S. A., Omenn, G. S., and Motulsky, A. G. 1995. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. J. Am. Med. Assoc. 274:1049–1057.

    Google Scholar 

  2. Eikelboom, J. W., Lonn, E., Genest, J., Hankey, G., and Yusuf, S. 1999. Homocyst(e)ine and cardiovascular disease: A critical review of the epidemiologic evidence. Ann. Intern. Med. 131:363–375.

    Google Scholar 

  3. Bostom, A. G., Rosemberg, I. H., Silbershatz, H., Jacques, P. F., Selhub, J., D'Agostino, R. B., Wilson, P. W., and Wolf, P. A. 1999. Nonfasting plasma total homocysteine levels and stroke incidence in elderly persons: The Framingham Study. Ann. Intern. Med. 131:352–355.

    Google Scholar 

  4. Temple, M. E., Luzier, A. B., and Kaazierad, D. J. 2000. Homocysteine as a risk factor for atherosclerosis. Ann. Pharmacother. 34:57–65.

    Google Scholar 

  5. Kuhn, W., Roebroek, R., Blom, H., van Oppenraaij, D., Przuntek, H., Kretschmer, A., Buttner, T., Woitalla, D., and Muller, T. 1998. Elevated plasma levels of homocysteine in Parkinson' disease. Eur. Neurol. 40:225–227.

    Google Scholar 

  6. Leblhuber, F., Walli, J., Artner-Dworzak, E., Vrecko, K., Widner, B., Reibnegger, G., and Fuchs, D. 2000. Hyperhomocysteinemia in dementia. J. Neural Transm. 107:343–353.

    Google Scholar 

  7. Seshadri, S., Beiser, A., Selhulb, J., Jacques, P. F., Rosemberg, I. H., D'Agostino, R. B., Wilson, P. W. F., and Wolf, P. A. 2002. Plasma homocysteine as a risk factor for dementia and Alzheimer' disease. The New Eng. J. Med. 346:476–483.

    Google Scholar 

  8. Mudd, S. H., Levy, H. L., and Skovby, F. 2001. Disorders of Transsulfuration. Pages 1279–1327, in Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D. (eds.), The Metabolic and Molecular Bases of Inherited Disease, 8th ed., McGraw-Hill, New York.

    Google Scholar 

  9. Kraus, J. P. 1998. Biochemistry and molecular genetics of cystathionine β-synthase deficiency. Eur. J. Pediatr. 157:S50–S53.

    Google Scholar 

  10. Dutra-Filho, C. S., Wannmacher, C. M. D., Pires, R. F., Gus, G., Kalil, A. M., and Wajner, M. 1989. Reduced locomotor activity of rats made histidinemia by injection of histidine. J. Nutr. 119: 1223–1227.

    Google Scholar 

  11. Moreira, J. C., Wannmacher, C. M. D., Costa, S. M., and Wajner, M. 1989. Effect of proline administration on rat behavior in aversive and nonaversive tasks. Pharmacol. Biochem. Behav. 32:885–890.

    Google Scholar 

  12. Dutra, J. C., Wajner, M., Wannmacher, C. M. D., Wannmacher, L. E., Pires, R. F., and Rosa-Junior, A. 1991. Effect of postnatal methylmalonate administration on adult rat behavior. Braz. J. Med. Biol. Res. 24:595–605.

    Google Scholar 

  13. Wyse, A. T. S., Sarkis, J. J. F., Cunha-Filho, J. S., Teixeira, M. V., Schetinger, M. R., Wajner, M., and Wannmacher, C. M. D. 1995. ATP diphosphohydrolase activity in synaptosomes from cerebral cortex of rats subjected to chemically induced phenylketonuria. Braz. J. Med. Biol. Res. 28:643–649.

    Google Scholar 

  14. Brusque, A. M., Mello, C. F., Buchanan, D. N., Terraciano, S. T., Rocha, M. P., Vargas, C. R., Wannmacher, C. M. D., and Wajner, M. 1999. Effect of chemically induced propionic acidemia on neurobehavioural development of rats. Pharmacol. Biochem. Behav. 64:529–534.

    Google Scholar 

  15. Ericinska, M. and Silver, I. A. 1994. Silver, ions and energy in mammalian brain. Prog. Neurobiol. 16:37–71.

    Google Scholar 

  16. Wyse, A. T. S., Streck, E. L., Worm, P., Wajner, A., Ritter, F., and Netto, C. A. 2000. Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem. Res. 25:969–973.

    Google Scholar 

  17. Grisar, T. 1984. Glial and neuronal Na+-K+ pump in epilepsy. Ann. Neurol. 16:128–134.

    Google Scholar 

  18. Lees, G. J. 1993. Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 54:287–322.

    Google Scholar 

  19. Hattori, N., Kitagawa, K., Higashida, T., Yagyu, K., Shimohama, S., Wataya, T., Perry, G., Smith M. A., and Inagaki, C. 1998. Cl-ATPase and Na+/K+-ATPase activities in Alzheimer' disease brains. Neurosci. Lett. 254:141–144.

    Google Scholar 

  20. Streck, E. L., Zugno, A. I., Tagliari, B., Wannmacher, C. M. D., Wajner, M., and Wyse, A. T. S. 2002. Inhibition of Na1, K1–ATPase activity by the metabolites accumulating in homocystinuria. Metab. Brain Dis. 17:83–91.

    Google Scholar 

  21. Araki, A. and Sako, Y. 1987. Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. 422:43–52.

    Google Scholar 

  22. Jones, D. H. and Matus, A. I. 1974. Isolation of plasma synaptic membrane from brain by combination flotation-sedimentation density gradient centrifugation. Biochim. Biophys. Acta 356:276–287.

    Google Scholar 

  23. Tsakiris, S. and Deliconstantinos, G. 1984. Influence of phosphatidylserine on (Na++ K+-stimulated ATPase and acetylcholinesterase activities of dog brain synaptossomal plasma membranes. Biochem. J. 22:301–307.

    Google Scholar 

  24. Chan, K. M., Delfer, D., and Junger, K. D. 1986. A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal. Biochem. 157:375–380.

    Google Scholar 

  25. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-die-binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  26. Kubová, H., Folbergrová, J., and Mares, P. 1995. Seizures induced by homocysteine in rats during ontogenesis. Epilepsia 36:750–756.

    Google Scholar 

  27. Clark, J. B., Bates, T. E., Cullingford, T., and Land, J. M. 1993. Development of enzymes of energy metabolism in the neonatal mammalian brain. Dev. Neurosci. 15:174–180.

    Google Scholar 

  28. Enesco, M. and Leblond, C. P. 1962. Increase in cell number as a factor in the growth of the organs and tissues of the young male rat. J. Embryol. Exp. Morphol. 10:530–562.

    Google Scholar 

  29. Winick, M. and Noble, A. 1965. Quantitative changes in DNA, RNA and protein during prenatal and postnatal growth in rat. Dev. Biol. 12:451–466.

    Google Scholar 

  30. Bertorello, A. M. and Kats, A. L. 1995. Regulation of Na+-K+-pump activity: Pathways between receptors and effectors. NIPS 10:253–259.

    Google Scholar 

  31. Lees, G. J. 1991. Inhibition of sodium-potassium-ATPase: A potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res. Rev. 16:283–300.

    Google Scholar 

  32. Recay, P., Bezáková, G., Kaplán, P., Lehotsky, J., and Mézesová, V. 1994. Alteration in rabbit brain endoplasmatic reticulum Ca2+ transport by free oxygen radicals in vitro. Biochem. Biophys. Res. Commun. 199:63–69.

    Google Scholar 

  33. Cousin, M. A., Nicholls, D. G., and Pocock, J. M. 1995. Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by ouabain. J. Neurochem. 64:2097–2104.

    Google Scholar 

  34. Streck, E. L., Zugno, A. I., Tagliari, B., Franzon, R., Wannmacher, C. M. D., Wajner, M., and Wyse, A. T. S. 2001. Inhibition of rat brain Na+, K+-ATPase activity induced by homocysteine is probably mediated by oxidative stress. Neurochem. Res. 26:1195–2000.

    Google Scholar 

  35. Welch, G. N., Upchurch, G. R., and Loscalzo, J. 1997. Homocysteine, oxidative stress, and vascular disease. Hosp. Pract. 32:81–92.

    Google Scholar 

  36. Hogg, N. 1999. The effect of cyst(e)ine on the auto-oxidation of homocysteine. Free Radical Biol. Med. 27:28–33.

    Google Scholar 

  37. Lees, G. J., Lehmann, A., Sandberg, M., and Hamberger, A. 1990. The neurotoxicity of ouabain, a sodium-potassium ATPase inhibitor, in rat hippocampus. Neurosci. Lett. 120:159–162.

    Google Scholar 

  38. Lees, G. J. and Leong, W. 1995. Brain lesions induced by specific and non-specific inhibitors of sodium-potassium ATPase. Brain Res. 649:225–233.

    Google Scholar 

  39. Kim, W.-K. and Pae, Y.-S. 1996. Involvement of N-methyl-D-aspartate receptor and free radical in homocysteine-mediated toxicity on rat cerebellar granule cells in culture. Neurosci. Lett. 216:117–120.

    Google Scholar 

  40. Kraus, J. P. 1990. Molecular analysis of cystathionine β-synthase: A gene on chromossome 21. Prog. Clin. Biol. Res. 360:201–214.

    Google Scholar 

  41. Watanabe, M., Osada, J., Aratani, Y., Kluckman, K., Reddick, R., Malinow, M. R., and Maeda, N. 1995. Mice deficient in cystathionine β-synthase: Animal models for mild and severe homocyst(e)inemia. Proc. Natl. Acad. Sci. USA 92:1585–1589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streck, E.L., Matte, C., Vieira, P.S. et al. Reduction of Na+,K+-ATPase Activity in Hippocampus of Rats Subjected to Chemically Induced Hyperhomocysteinemia. Neurochem Res 27, 1593–1598 (2002). https://doi.org/10.1023/A:1021670607647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021670607647

Navigation