Skip to main content
Log in

Mitochondrial Contributions to Cancer Cell Physiology: Redox Balance, Cell Cycle, and Drug Resistance

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Alterations in the biochemistry of mitochondria have been associated with cell transformation and the acquisition of drug resistance to certain chemotherapeutic agents, suggesting that mitochondria may play a supportive role for the cancer cell phenotype. Mitochondria are multifunctional organelles that contribute to the cellular adenosine triphosphate (ATP) pool and cellular redox balance through the production of reactive oxygen intermediates (ROI). Our laboratory has focused on these mitochondrial functions in the context of cancer cell physiology to evaluate the potential role of mitochondria as controllers of tumour cell proliferation. Low concentrations of ROI have been implicated as messengers in intracellular signal transduction mechanisms; thus an imbalance of ROI production from the mitochondria may support cancer cell growth. In addition, suppression of mitochondrial ATP production can halt cell cycle progression at two energetic checkpoints, suggesting that the use of tumor-selective agents to reduce ATP production may offer a therapeutic target for cancer growth control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andrews, P. A., and Albright, K. D. (1992). Cancer Res. 52, 1895–1901.

    Google Scholar 

  • Bernal, S. D., Lampidis, T. J., McIsaac, R. M., and Chen, L. B. (1983). Science. 222, 169–172.

    Google Scholar 

  • Biggs, J. R., and Kraft, A. S. (1995). J. Mol. Med. 73, 509–514.

    Google Scholar 

  • Boveris, A., Oshino, N., and Chance, B. (1972). Biochem. J. 128, 617–630.

    Google Scholar 

  • Brightman, A. O., Wang, J., Kin-man Miu, R., Sun, I. L., Barr, R., Crane, F. L., and Morre, D. J. (1992). Biochim. Biophys. Acta 1105, 109–117.

    Google Scholar 

  • Burdon, R. H. (1995). Free Rad. Biol. Med. 18, 775–794.

    Google Scholar 

  • Chance, B., Sies, H., and Boveris, A. (1979). Physiol. Rev. 59, 527–605.

    Google Scholar 

  • Chen, L. B. (1988). Annu. Rev. Cell Biol. 4, 155–181.

    Google Scholar 

  • Christman, J. E., Miller, D. S., Coward, P., Smith, L. H., and Teng, N. N. (1990). Gynecol. Oncol. 39, 72–79.

    Google Scholar 

  • Derman, A. I., Prinz, W. A., Belin, D., and Beckwith, J., (1993). Science 262, 1744–1747.

    Google Scholar 

  • Dorward, A. M., and Singh, G. (1996). Anticancer Res. 16, 443–447.

    Google Scholar 

  • Guyton, K. Z., Liu, Y., Gorospe, M., Xu, Q., and Holbrook, N. J. (1996). J. Biol. Chem. 271, 4138–4142.

    Google Scholar 

  • Henderson, B. W., and Dougherty, T. J. (1992). Photochem. Photobiol. 55, 145–157.

    Google Scholar 

  • Herr, H. W., Huffman, J. L., Huryk, R., Heston, W. D. W., Melamed, M. R., and Whitmore, Jr., W. F. (1988). Cancer Res. 48, 2061–2063.

    Google Scholar 

  • Hwang, C., Sinskey, A. J., and Lodish, H. F. (1992). Science 257, 1496–1502.

    Google Scholar 

  • Kariya, K., Nakamura, K., Nomoto, K., Kobayashi, Y., and Namiki, M. (1995). Cancer Biother. 10, 139–145.

    Google Scholar 

  • Knebel, A., Rahmsdorf, H.J., Ullrich, A., and Herrlich, P. (1996). EMBO J. 15, 5314–5325.

    Google Scholar 

  • Koya, K., Li, Y., Wang, H., Ukai, T., Tatsuta, N., Kawakami, M., Shishido, T., and Chen, L. B. (1996). Cancer Res. 56, 538–543.

    Google Scholar 

  • Krag, D. N., Theon, A. P., Gan, L., Wardell, J., and Tao, S. Z. (1989). J. Surg. Res. 46, 361–365.

    Google Scholar 

  • Lampidis, T. J., Bernal, S. D., Summerhayes, I. C., and Chen, L. B. (1983). Cancer Res. 43, 716–720.

    Google Scholar 

  • MacLachlan, T. K., Sang, N., and Giordano, A. (1995). Crit. Rev. Eukaryot. Gene Expr. 5, 127–156.

    Google Scholar 

  • Matsushime, H., Roussel, M. F., Ashmun, R., and Sherr, C. J. (1991). Cell 65, 701–713.

    Google Scholar 

  • Meier, B., Jesaitis, A. J., Emmendorffer, A., Roesler, J. and Quinn, M. T. (1993). Biochem J. 289, 481–486.

    Google Scholar 

  • Modica-Napolitano, J. S., Weiss, M. J., Chen, L. B., and Aprille, J. R. (1984). Biochem. Biophys. Res. Commun. 118, 717–723.

    Google Scholar 

  • Modica-Napolitano, J. S., Koya, K., Weisberg, E., Brunelli, B. T., Li, Y., and Chen, L. B. (1996). Cancer Res. 56, 544–550.

    Google Scholar 

  • Moorehead, R. A., and Singh, G. (1995). Cell. Pharmacol. 2, 311–317.

    Google Scholar 

  • Moorehead, R. A., Armstrong, S. G., Wilson, B. C., and Singh, G. (1994). Cancer Res. 54, 2556–2559.

    Google Scholar 

  • Murell, G. A. C., Francis, M. J. O., and Bromley, L. (1990). Biochem. J. 265, 659–665.

    Google Scholar 

  • Ohtsubo, M., and Roberts, J. M. (1993). Science 259, 1908–1912.

    Google Scholar 

  • Powis, G., Briehl, M., and Oblong, J. (1995). Pharmacol. Ther. 68, 149–173.

    Google Scholar 

  • Rahn, C. A., Bombick, D. W., and Doolittle, D. J. (1991). Fund. Appl. Toxicol. 16, 435–448.

    Google Scholar 

  • Rao, G. N. (1996). Oncogene 13, 713–719.

    Google Scholar 

  • Resnitsky, D., Gosser, M., Bujard, H., Reed, S. I. (1994). Mol. Cell. Biol. 14, 1669–16790.

    Google Scholar 

  • Salet, C., and Moreno, G. (1990). J. Photochem. Photobiol. 5, 133–150.

    Google Scholar 

  • Sharkey, S. M., Wilson, B. C., Moorehead, R., and Singh, G. (1993). Cancer Res. 53, 4994–4999.

    Google Scholar 

  • Singh, G., and Moorehead, R. (1992). Int. J. Oncol. 1, 825–829.

    Google Scholar 

  • Singh, G., and Shaughnessy, S. G. (1988). Can. J. Physiol. Pharmacol. 66, 243–245.

    Google Scholar 

  • Steichen, J. D., Weiss, M. J., Elmaleh, D. R., and Martuza, R. L. (1991). J. Neurosurg. 74, 116–122.

    Google Scholar 

  • Sullivan, S. G., Chiu, D., T-Y., Errasfa, M., Wang, J. M., Qi, J-S, and Stern, A. (1994). Free Rad. Biol. Med. 16, 399–403.

    Google Scholar 

  • Sundaresan, M., Yu, Z-X., Ferrans, V. J., Irani, K., and Finkel, T. (1995). Science 270, 296–299.

    Google Scholar 

  • Sweet, S., and Singh, G. (1995). Cancer Res. 55, 5164–5267.

    Google Scholar 

  • Szatrowski, T. P., and Nathan, C. F. (1991). Cancer Res. 51, 794–798.

    Google Scholar 

  • Thannickal, V. J. and Fanburg, B. L. (1995). J. Biol. Chem. 270, 30334–30338.

    Google Scholar 

  • van Hillegersberg, R., Kort, W. J., and Wilson, J. H. P. (1994). Drugs 48, 510–527.

    Google Scholar 

  • Weinberg, R. A. (1995). Cell 81, 323–330.

    Google Scholar 

  • Weisberg, E. L., Koya, K., Modica-Napolitano, J., Li, Y., and Chen, L. B. (1996). Cancer Res. 56, 551–555.

    Google Scholar 

  • Weiss, M. J., Wong, J. R., Ha, C. S., Bleday, R., Salem, R. R., Steele, G. D., and Chen, J. B. (1987). Proc. Natl. Acad. Sci. USA 84, 5444–5448.

    Google Scholar 

  • Wolin, M. S. (1996). Microcirculation 3, 1–17.

    Google Scholar 

  • Zinkewich-Peotti, K., and Andrews, P. A. (1992a). Proc. Am. Assoc. Cancer Res. 33, ABS 537.

    Google Scholar 

  • Zinkewich-Peotti, K., and Andrews, P. A. (1992b). Cancer Res. 52, 1902–1906.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorward, A., Sweet, S., Moorehead, R. et al. Mitochondrial Contributions to Cancer Cell Physiology: Redox Balance, Cell Cycle, and Drug Resistance. J Bioenerg Biomembr 29, 385–392 (1997). https://doi.org/10.1023/A:1022454932269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022454932269

Navigation