Skip to main content
Log in

Formation of Formaldehyde from Adrenaline In Vivo; a Potential Risk Factor for Stress-Related Angiopathy

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cardiovascular and cerebrovascular disorders are well known to be associated with stress related behaviors. Stress enhances excretion of adrenaline, which is deaminated by monoamine oxidase and methylamine is formed. This product can be further deaminated by semicarbazide-sensitive amine oxidase (SSAO) and converted to toxic formaldehyde, hydrogen peroxide and ammonia. SSAO is located in the cardiovascular smooth muscles and circulated in the blood. We investigated whether formaldehyde can be derived from adrenaline in vivo. Methylamine was confirmed to be a product of adrenaline catalyzed by type A monoamine oxidase (MAO-A). Irreversible and long-lasting radioactive residual activity was detected in different tissues following administration of 1-[N-methyl-3H]-adrenaline. Such irreversible linkage could be blocked by selective MAO-A or SSAO inhibitors. Endothelial cells are quite sensitive to formaldehyde and relatively resistant to hydrogen peroxide. It is possible that stimulation of adrenaline excretion by chronic stress could increase the levels of circulatory formaldehyde. Such chronic “formaldehyde” stress may be involved in the initiation of endothelial injury and subsequently angiopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Frankenhaeuser, M. 1971. Behavior and circulating catecholamines. Brain Res. 31:241–262.

    Google Scholar 

  2. von Euler, U. S. 1976. Adrenal medullary secretion and its neural control. pp 283–333 in Martini L., and Ganong W. F., (eds) Neuroendocrinology Vol. 2, New York: Academic Press.

    Google Scholar 

  3. Yu, P. H. 1986. Monoamine Oxidase. in Boulton, A. A., Baker, G. B., and Yu, P. H., eds. Neuromethods Volume V: Neurotransmitter Enzymes. New Jersey: Humana Press, Clifton, pp 235–272.

    Google Scholar 

  4. Yu, P. H. 1990. Deamination of aliphatic amines of different chain lengths by rat aorta semicarbazide-sensitive amine oxidase. J. Pharm. Pharmacol. 42:882–884.

    Google Scholar 

  5. Precious, E., Gunn, C. E., and Lyles, G. A. 1988. Deamination of methylamine by semicarbazide-sensitive amine oxidase in human umbilical artery and rat aorta. Biochem. Pharmacol. 37:707–713.

    Google Scholar 

  6. Lyles, G. A., Holt, A., and Marshal, C. M. S. 1990. Further studies on the metabolism of methylamine by semicarbazide-sensitive amine oxidase activities in human plasma. J. Pharm. Pharmacol. 42:322–338.

    Google Scholar 

  7. Boor, P., Trent, M. B., Lyles, G. A., Tao, M., and Ansari, G. A. S. 1992. Methylamine metabolism to formaldehyde by vascular semicarbazide-sensitive amine oxidase. Toxicology 73:251–258.

    Google Scholar 

  8. Yu, P. H., Davis, D. A., and Boulton, A. A. 1992. Aliphatic propargylamines: potent selective irreversible monoamine oxidase B inhibitors. J. Med. Chem. 35:3705–3713.

    Google Scholar 

  9. Yu, P. H., and Zuo, D. M. 1993. Oxidative deamination of methylamine by semicarbazide-sensitive amine oxidase leads to cytotoxic damage in endothelial cells; Possible consequence for diabetes. Diabetes 42:594–603.

    Google Scholar 

  10. Matsumoto, Y., Uyama, O., Shimizu, S., Michishita, H., Mori, R., Owada, T., and Sugita, M. 1993. Do anger and aggression affect carotid atherosclerosis. Stroke 24:983–986.

    Google Scholar 

  11. Tagawa, R. R., and Hosaka, T. 1990. Study of the correlation between the type A behavior pattern in patients with coronary heart disease and the extent of coronary atherosclerosis. Tokai. J. Exp. Clin. Med. 1:45–50.

    Google Scholar 

  12. Gallacher, J. E., Yarnell, J. W., and Butland, B. K. 1988. Type A behavior and prevalent heart disease in the Caerphilly study: increase in risk or symptom reporting? J. Epidemiol. Commun. Health 63:226–231.

    Google Scholar 

  13. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63.

    Google Scholar 

  14. Lyles, G. A., and McDougall, S. A. 1989. The enhanced daily excretion of urinary methylamine in rats treated with semicarbazide or hydralazine may be related to the inhibition of semicarbazide-sensitive amine oxidase activities. J. Pharm. Pharmacol. 41:97–100.

    Google Scholar 

  15. Yu, P. H., and Zuo, D. M. 1996. Formaldehyde produced endogenously via deamination of methylamine; a potential risk factor for initiation of endothelial injury. Atherosclerosis 120:189–197.

    Google Scholar 

  16. Dar, M. S., Morselli, P. L., and Bowman, E. R. 1985. The enzymatic systems involved in the mammalian metabolism of methylamine. Gen. Pharmacol. 16:557–560.

    Google Scholar 

  17. Baba, S., Watanabe, Y., Gejyo, F., and Arakwa, M. 1984. High-performance liquid chromatographic determination of serum aliphatic amines in chronic renal failure. Clin. Chim. Acta. 136:49–56.

    Google Scholar 

  18. Bolt, H. M. 1987. Experimental toxicology of formaldehyde. J. Can. Res Clin. Oncol. 13:305–309.

    Google Scholar 

  19. Grafstrom, R. C., Curren, R. D., Yang, L. L., and Harris, C. C. 1985. Genotoxicity of formaldehyde in cultured human bronchial fibroblasts. Science 228:89–91.

    Google Scholar 

  20. Gibson, J. E. (ed.). 1983. Formaldehyde Toxicity. Hemisphere Publ., Washington, New Jersey.

    Google Scholar 

  21. Cooper, J. R., and Kini, M. M. 1962. Editorial biochemical aspects of methanol poisoning. Biochem. Pharmacol. 11:405–416.

    Google Scholar 

  22. Tsuboi, S., Kawase, M., Takaka, A., Hirmatus, M., Wada, Y., Kawakami, Y., Ikeka, M., and Ohmori, S. 1992. Purification and characterization of formaldehyde dehydrogenase from rat liver cytosol. J. Biochem. 111:465–471.

    Google Scholar 

  23. Malorny, G. N., Rietbrock, N., and Schneider, M. 1965. The oxidation of formaldehyde to formic acid in the blood. A contribution to the metabolism of formaldehyde. Schmiedebergs Arch. Exp. Path. Pharmak. 250:419–436.

    Google Scholar 

  24. Helander, A., and Tottmar, O. 1987. Metabolism of biogenic aldehydes in isolated human blood cells, platelets and in plasma. Biochem. Pharmacol. 36:1077–1082.

    Google Scholar 

  25. Zuo, D. M., and Yu, P. H. 1993. Semicarbazide-sensitive amine oxidase and monoamine oxidase in rat brain microvessels, meninges, retina and eye sclera. Brain Res. Bull. 33:307–311.

    Google Scholar 

  26. Halliwell, B., and Gutteridge, J. M. C. (eds). 1989. Free radicals in biology and medicine. New York, N.Y. Oxford University Press.

    Google Scholar 

  27. Sackett, D. L., and Winkelstein, W. 1967. The relationship between cigarette usage and aortic atherosclerosis. Am. J. Epidemiol. 86:264–270.

    Google Scholar 

  28. Wilens, S. L., and Plair, C. M. 1962. Cigarette smoking and atherosclerosis. Science 138:975–977.

    Google Scholar 

  29. Cryer, P. E., Haymond, M. W., Santiago, J. V., and Shad, S. D. 1967. Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated haemodynamic and metabolic events. N. Engl. J. Med. 295:573–577.

    Google Scholar 

  30. US Dept Health and Human Services. 1982. Constituents of tobacco smoke. USPHS Publication No. 82–50179, 322.

  31. McKennis, Jr. H., Turnbull, L. B., Schwartz, S. L., Tamake, E., and Bowman, E. R. 1962. Demethylation in the metabolism of (−)-nicotine. J. Biol. Chem. 237:541–546.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, P.H., Lai, CT. & Zuo, DM. Formation of Formaldehyde from Adrenaline In Vivo; a Potential Risk Factor for Stress-Related Angiopathy. Neurochem Res 22, 615–620 (1997). https://doi.org/10.1023/A:1022478221421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022478221421

Navigation