Skip to main content
Log in

A Carboxy-terminal Region of the Hepatitis B Virus X Protein Promotes DNA Interaction of CREB and Mimics the Native Protein for Transactivation Function

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Earlier we had shown that the conserved region E (residues 120–140) of HBV X protein (HBx) is crucial for transactivation. To investigate this region further, its oligomerisation was considered necessary to augment intracellular biochemical stability. Two to ten unit long tandem repeats of the E region (X16-n) were generated and their expression vectors constructed. Transient transfection of the E expression vectors along with different CAT constructs showed increase in the reporter activity. Interestingly a direct correlation was observed between the number of E repeat units in an expression vector and the level of transactivation. The transactivation levels with decameric X16 on different reporter constructs were comparable to those of the wild type HBx. Co-expression of X16 in a stable CHO-K1 cell line expressing the native HBx, showed co-operativity for transactivation. Further, X16 facilitated the binding of cAMP response element binding protein (CREB) to its responsive element just like the native HBx. The present study suggests that the C-terminal 'E' region of HBx represents its transactivation domain that acts by promoting the interaction of transcription factors to their cognate response elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brechot C., Gozuacik D., Murakami Y., and Paterlini-Brechot P., Semin Cancer Biol 10, 211-231, 2000.

    Google Scholar 

  2. Murakami S., J Gastroenterol 36, 651-660, 2001.

    Google Scholar 

  3. Caselmann W.H., Adv Virus Res 47, 253-302, 1996.

    Google Scholar 

  4. Klein N.P., and Schneider R.J., Mol Cell Biol 17, 6427-6436, 1997.

    Google Scholar 

  5. Nijhara R., Jana S.S., Goswami S.K., Kumar V., and Sarkar D.P., FEBS Lett 504, 59-64, 2001.

    Google Scholar 

  6. Nijhara R., Jana S.S., Goswami S.K., Rana A., Majumdar S.S., Kumar V., and Sarkar D.P., J Virol 75, 10348-10358, 2001.

    Google Scholar 

  7. Tarn C., Lee S., Hu Y., Ashendel C., and Andrisani O.M., J Biol Chem 276, 34671-34678, 2001.

    Google Scholar 

  8. Park U.S., Park S.K., Lee Y.I., Park J.G., and Lee Y.I., Oncogene 19, 3384-3394, 2000.

    Google Scholar 

  9. Bouchard M., Giannakopoulos S., Wang E.H., Tanese N., and Schneider R.J., J Virol 75, 4247-4257, 2001.

    Google Scholar 

  10. Diao J., Khine A.A., Sarangi F., Hsu E., Iorio C., Tibbles L.A., Woodgett J.R., Penninger J., and Richardson C.D., J Biol Chem 276, 8328-8340, 2001.

    Google Scholar 

  11. Huo T.I., Wang X.W., Forgues M., Wu C.G., Spillare E.A., Giannini C., Brechot C., and Harris C.C., Oncogene 20, 3620-3628, 2001.

    Google Scholar 

  12. Natoli G., Avantaggiati M.L., Chirillo P., Costanzo A., Artini M., Balsano C., and Levrero M., Mol Cell Biol 14, 989-998, 1994.

    Google Scholar 

  13. Su F., Theodosis C.N., and Schneider R.J., J Virol 75, 215-225, 2001.

    Google Scholar 

  14. Maguire H.F., Hoeffler J.P., and Siddiqui A., Science 252, 842-844, 1991.

    Google Scholar 

  15. Barnabas S., and Andrisani O.M., J Virol 74, 83-90, 2000.

    Google Scholar 

  16. Choi B.H., Park G.T., and Rho H.M., J Biol Chem 274, 2858-2865, 1999.

    Google Scholar 

  17. Antunovic J., Lemieux N., and Cromlish J.A., Cell Mol Biol Res 39, 463-482, 1993.

    Google Scholar 

  18. Kong H.J., Hong S.H., Lee M.Y., Kim H.D., Lee J.W., and Cheong J., FEBS Lett 483, 114-118, 2001.

    Google Scholar 

  19. Qadri I., Maguire H.F., and Siddiqui A., Proc Natl Acad Sci USA 92, 1003-1007, 1995.

    Google Scholar 

  20. Lin Y., Nomura T., Yamashita T., Dorjsuren D., Tang H., and Murakami S., J Biol Chem 272, 7132-7139, 1997.

    Google Scholar 

  21. Haviv I., Shamay M., Doitsh G., and Shaul Y., Mol Cell Biol 18, 1562-1569, 1998.

    Google Scholar 

  22. Qadri I., Conaway J.W., Conaway R.C., Schaack J., and Siddiqui A., Proc Natl Acad Sci USA 93, 10578-10583, 1996.

    Google Scholar 

  23. Cheong J.H., Yi M., Lin Y., and Murakami S., EMBO J 14, 143-150, 1995.

    Google Scholar 

  24. Sitterlin D., Bergametti F., Tiollais P., Tennant B.C., and Transy C., Oncogene 19, 4427-4431, 2000.

    Google Scholar 

  25. Meyer B.K., Pray-Grant M.G., Vanden Heuvel J.P., and Perdew G.H., Mol Cell Biol 18, 978-988, 1998.

    Google Scholar 

  26. Cong Y., Yao Y., Yan W., Kuzhandeivelu N., and Seto E., J Biol Chem 272, 16482-16489, 1997.

    Google Scholar 

  27. Melegari M., Scaglioni P.P., and Wands J.R., J Virol 72, 1737-1743, 1998.

    Google Scholar 

  28. Zhang Z., Torii N., Furusaka A., Malayaman N., Hu Z., and Liang T.J., J Biol Chem 275, 15157-15165, 2000.

    Google Scholar 

  29. Sun B.S., Zhu X., Clayton M.M., Pan J., and Feitelson M.A., Hepatology 27, 228-239, 1998.

    Google Scholar 

  30. Kumar V., Jayasuryan N., and Kumar R., Proc Natl Acad Sci USA 93, 5647-5652, 1996.

    Google Scholar 

  31. Weisz A., and Rosales R., Nucl Acids Res 18, 5097-5106, 1990.

    Google Scholar 

  32. Menzo S., Clementi M., Alfani E., Bagnarelli P., Iacovacci S., Manzin A., Dandri M., Natoli G., Levrero M., and Carloni G., Virology 193, 878-882, 1993.

    Google Scholar 

  33. Banerjee-Basu S., and Buonanno A., Mol Cell Biol 13, 7019-7028, 1993.

    Google Scholar 

  34. Hess J.L., Pyper J.M., and Clements J.E., J Virol 60, 385-393, 1986.

    Google Scholar 

  35. Arya S.K., Guo C., Josephs S.F., and Wong-Staal F., Science 279, 69-73, 1985.

    Google Scholar 

  36. Gorman C.M., Merlino G.T., Willingham M.C., Pastan I., and Howard B.H., Proc Natl Acad Sci USA 79, 6777-6781, 1982.

    Google Scholar 

  37. Gorman C.M., Moffat L.F., and Howard B.H., Mol Cell Biol 2, 1044-1051, 1982.

    Google Scholar 

  38. Klein-Hitpass L., Ryffel G.U., Heitlinger E., and Cato A.C., Nucl Acids Res 16, 647-663, 1988.

    Google Scholar 

  39. Kim C.M., Koike K., Saito I., Miyamura T., and Jay G., Nature 351, 317-320, 1991.

    Google Scholar 

  40. Schaefer S., and Gerlich W.H., Intervirology 38, 143-154, 1995.

    Google Scholar 

  41. Lalchtakia R., Kumar V., Reddi H., Mathur M., Datta Gupta S., and Panda S.K., Gastroenterol Hepatol 18, 80-91, 2003.

    Google Scholar 

  42. Shen S-H., Proc Natl Acad Sci USA 81, 4627-4631, 1984.

    Google Scholar 

  43. Lee J.H., Minn I., Park C.B., and Kim S.C., Protein Expr Purif 12, 53-60, 1998.

    Google Scholar 

  44. Sagermann M., Baase W.A., and Matthews B.W., Proc Natl Acad Sci USA 96, 6078-6083, 1999.

    Google Scholar 

  45. Barnabas S., Hai T., and Andrisani O.M., J Biol Chem 272, 20684-20690, 1997.

    Google Scholar 

  46. Perini G., Oetjun E., and Green M.R., J Biol Chem 274, 13970-13977, 1999.

    Google Scholar 

  47. Donello J.E., Beeche A.A., Smith III J.G., Lucero G.R., and Hope T.J., J Virol 70, 4345-4351, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddi, H., Kumar, R., Jain, S.K. et al. A Carboxy-terminal Region of the Hepatitis B Virus X Protein Promotes DNA Interaction of CREB and Mimics the Native Protein for Transactivation Function. Virus Genes 26, 227–238 (2003). https://doi.org/10.1023/A:1024491028647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024491028647

Navigation