Skip to main content
Log in

Inhibition of Mitochondrial Creatine Kinase Activity by D-2-Hydroxyglutaric Acid in Cerebellum of Young Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

D-2-Hydroxyglutaric aciduria (DHGA) is a neurometabolic disorder biochemically characterized by tissue accumulation and excretion of high amounts of D-2-hydroxyglutaric acid (DGA). Although the affected patients have predominantly severe neurological findings, the underlying mechanisms of brain injury are virtually unknown. In previous studies we have demonstrated that DGA, at concentrations as low as 0.25 mM, significantly decreased creatine kinase activity and other parameters of energy metabolism in cerebral cortex of young rats. In the present study, we investigated the effect of DGA (0.25-5 mM) on total creatine kinase (tCK) activity, as well as on CK activity in cytosolic (Cy-CK) and mitochondrial (Mi-CK) preparations from cerebellum of 30-day-old Wistar rats in order to test whether the inhibitory effect of DGA on CK was tissue specific. We verified that tCK (22% inhibition) and Mi-CK (40% inhibition) activities were moderately inhibited by DGA at concentrations of 2.5 mM and higher, in contrast to Cy-CK, which was not affected by the acid. Kinetic studies revealed that the inhibitory effect of DGA was non-competitive in relation to phosphocreatine. We also observed that this inhibition was fully prevented by preincubation of the homogenates with reduced glutathione, suggesting that the inhibition of CK activity by DGA is possibly mediated by modification of essential thiol groups of the enzyme. Our present results therefore demonstrate a relatively weak inhibitory effect of DGA on cerebellum Mi-CK activity, as compared to that provoked in cerebral cortex, and may possibly be related to the neuropathology of DHGA, characterized by cerebral cortex abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chalmers, R. A., Lawson, A. M., Watts, R. W. E., Tavill, A. S., Kamerling, J. P., Hey E., and Ogilvie, D. 1980. D-2-Hydroxyglutaric aciduria: Case report and biochemical studies. J. Inherit. Metab. Dis. 3:11-15.

    Google Scholar 

  2. van der Knaap, M. S., Jakobs, C., Hoffman, G. F., Duran, M., Muntau, A. C., Schweitzer, S., Kelley, R. I., Parrot-Rouland, F., Amiel, J., De Lonlay, P., Rabier, D., and Eeg-Olofsson, O. 1999. D-2-Hydroxyglutaric aciduria: Further clinical delineation. J. Inherit. Metab. Dis. 22:404-413.

    Google Scholar 

  3. van der Knaap, M. S., Jakobs, C., Hoffmann, G. F., Nyhan, W. L., Renier, W. O., Smeitink, J. A. M., Catsman-Berrevoets, C. E., Hjalmarson, O., Vallance, H., Sugita, K., Bowe, C. M., Herrin, J. T., Craigen, W. J., Buist, N. R. M., Brookfield, D. S. K., and Chalmers, R. A. 1999. D-2-Hydroxyglutaric aciduria: biochemical marker or clinical disease entity? Ann. Neurol. 45:111-119.

    Google Scholar 

  4. Wajner, M., Vargas, C. R., Funayama, C., Fernández, A., El as, M. L., Goodman, S. I., Jakobs, C., and van der Knapp, M. S. 2002. D-2-Hydroxyglutaric aciduria in a patient with a severe clinical phenotype and unusual MRI findings. J. Inherit. Metab. Dis. 25:28-34.

    Google Scholar 

  5. Gibson, K. M., Craigen, W., Herman, G. E., and Jakobs, C. 1993. D-2-Hydroxyglutaric aciduria in a newborn with neurological abnormalities: A new neurometabolic disorder? J. Inherit. Metab. Dis. 16:497-500.

    Google Scholar 

  6. Silva, C. G., Ribeiro, C. A. J., Leipnitz, G., Dutra-Filho, C. S., Wyse, A. T. S., Wannmacher, C. M. D., Sarkis, J. J. F., Jakobs, C., and Wajner, M. 2002. Inhibition of cytochrome c oxidase activity in rat cerebral cortex and human skeletal muscle by D-2-hydroxyglutaric acid in vitro. Biochim. Biophys. Acta 1586:81-91.

    Google Scholar 

  7. Wallimann, T., Wyss, M., Brdiczka, D., and Nicolay, K. 1992. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281:21-40.

    Google Scholar 

  8. Wyss, M., Smeitink, J., Wevers, R. A., and Wallimann, T. 1992. Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism. Biochim. Biophys. Acta 1102:119-166.

    Google Scholar 

  9. Schlegel, J., Zurbriggen, B., Wegmann, G., Wyss, M., Eppenberger, H., and Wallimann, T. 1988. Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: Characterization, localization and structure-function relationships. J. Biol. Chem. 262:16942-16993.

    Google Scholar 

  10. O'Gorman, E., Beutner, G., Wallimann, T., and Brdiczka, D. 1996. Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle. Biochim. Biophys. Acta 1276:161-170.

    Google Scholar 

  11. Saks, V. A., Kuznetsov, A. V., Kuprianov, V. V., Miceli, M. V., and Jacobus, W. E. 1985. Creatine kinase of rat heart mitochondria: The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J. Biol. Chem. 260:7757-7764.

    Google Scholar 

  12. Hemmer, W. and Wallimann, T. 1993. Functional aspects of creatine kinase in brain. Dev. Neurosci. 15:249-260.

    Google Scholar 

  13. Burbaeva, G. S., Aksenova, M. V., and Makarenko, I. G. 1992. Decreased level of creatine kinase BB in the frontal cortex of Alzheimer patients. Dementia 3:91-94.

    Google Scholar 

  14. Aksenov, M. I., Aksenova, M. V., Payne, R. M., Smith, C. D., Markesbery, W. R., and Carney, J. M. 1997. The expression of creatine kinase isoenzymes in neocortex of pacients with neurodegenerative disorders: Alzheimer's and Pick's disease. Exp. Neurol. 146:458-465.

    Google Scholar 

  15. Wyss, M. and Shulze, A. 2002. Health implications of creatine: Can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 112:243-260.

    Google Scholar 

  16. Silva, C. G., Bueno, A. R. F., Schuck, P. F., Leipnitz, G., Ribeiro, C. J. A., Rosa, R. B., Dutra Filho, C. S., Wyse, A. T. S., Wannmacher, C. M. D., and Wajner, M. in press 2003. Inhibition of creatine kinase activity from rat cerebral cortex by D-2-hydroxyglutaric acid in vitro. Neurochem. Int.

  17. Ramirez, O. and Jiménez, E. 2000. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development. Int. J. Dev. Neurosci. 18:815-823.

    Google Scholar 

  18. Jones, D. H. and Matus, A. I. 1974. Isolation of plasma synaptic membrane from brain by combination flotation-sedimentation density gradient centrifugation. Biochim. Biophys. Acta 356:276-287.

    Google Scholar 

  19. Tsakiris, S. and Deliconstantinos, G. 1984. Influence of phosphatidylserine on (Na+,K+)-stimulated ATPase and acetyl-cholinesterase activities of dog brain synaptossomal plasma membranes. J. Biochem. 22:301-307.

    Google Scholar 

  20. Hughes, B. P. 1962. A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin. Chim. Acta 7:597-604.

    Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-267.

    Google Scholar 

  22. Cornish-Bowden, A. 1974. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem. J. 137:143-144.

    Google Scholar 

  23. Dixon, M. and Webb, E. C. 1964. Enzymes. 2nd ed. London, Longman.

    Google Scholar 

  24. Oliver, C. N., Starke-Reed, P. E., Stadtman, R., Liu, G. J., Carney, J. M., and Fliyd, R. A. 1990. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion injury to gerbil brain. Proc. Natl. Acad. Sci. 87:5144-5147.

    Google Scholar 

  25. Burmistrov, S. O., Mashek, O. P., and Kotin, A. M. 1992. The action of acute alcoholic intoxication on the antioxidant system and creatine kinase activity in the brain of rat embryos. Eksp. Klin. Farmakol. 55:54-56.

    Google Scholar 

  26. Stanimirovic, D. B., Wong, J., Ball, R., and Durkin, J. P. 1995. Free radical-induced endothelial membrane dysfunction at the site of blood-brain barrier: Relationship between lipid peroxidation, Na, K-ATPase activity, and 51Cr release. Neurochem. Res. 20:1417-1427.

    Google Scholar 

  27. Avrova, N. F., Victorov, I. V., Tyurin, V. A., Zakharova, I. O., Sokolova, T. V., Andreeva, N. A., Stelmaschuk, E. V., Tyurina, Y. Y., and Gonchar, V. S. 1998. Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: Possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes. Neurochem. Res. 23:945-952.

    Google Scholar 

  28. Kölker, S., Okun, J. G., Ahlemeyer, B., Wyse, A. T. S., Hörster, F., Wajner, M., Kohlmüller, D., Mayatepek, E., Krieglstein, J., and Hoffmann, G. 2002. Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in neuronal cultures from chick embryo telencephalons. J. Neurosci. Res. 68:424-431

    Google Scholar 

  29. Kölker, S., Pawlak, V., Ahlemeyer, B., Okun, J. G., Hörster, F., Mayatepek, E., Krieglstein, J., Hoffman, G. F., and Köhr, G. 2002. NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in D-2-hydroxyglutaric aciduria. Eur. J. Neurosci. 16:21-28.

    Google Scholar 

  30. Hamman, B. L., Bittl, J. A., Jacobus, W. E., Aleen, P. D., Spencer, R. S., Tina, R., and Ingwall, J. S. 1995. Inhibition of creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am. J. Physiol. 269:H1030-H1036.

    Google Scholar 

  31. Gross, W. L., Bak, M. I., Ingwall, J. S., Arstal, I. M. A., Smith, T. W., Balligand, J. L., and Kelly, R. 1996. Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc. Natl. Acad. Sci. USA 93:5604-5609.

    Google Scholar 

  32. Holzman, D., Meyers, R., Khait, I., and Jensen, F. 1997. Brain creatine kinase reaction rates and reactant concentrations during seizures in developing rats. Epilepsy Res. 27:7-11.

    Google Scholar 

  33. Hyakudo, T., Hori, H., Tanaka, I., and Igisu, H. 2001. Inhibition of cretine kinase activity in rat brain by methyl bromide gas. Inhal. Toxicol. 13:659-669.

    Google Scholar 

  34. Matsuoka, M., Inoue, N., and Igisu, H. 1992. Effects of methylmercury chloride on creatine kinase activity in the rat brain. J. UOEH 14:77-81.

    Google Scholar 

  35. Kaldis, P., Hemmer, W., Zanolla, E., Holtzman, D., and Wallimann, T. 1996. 'Hot spots' of creatine kinase localization in brain: Cerebellum, hippocampus and choroid plexus. Dev. Neurosci. 18:542-554.

    Google Scholar 

  36. Ilyin, S. E., Sonti, G., Molloy, G., and Plata-Salaman, C. R. 1996. Creatine kinase-B mRNA levels in brain regions from male and female rats. Brain Res. Mol. Brain Res. 41:50-56.

    Google Scholar 

  37. Hemmer, W., Zanolla, E., Furter-Graves, E. M., Eppenberger, H. M., and Wallimann, T. 1994. Creatine kinase isoenzymes in chicken cerebellum: Specific localization of brain-type creatine kinase in Bergmann glial cells and muscle-type creatine kinase in Purkinje neurons. Eur. J. Neurosci. 6:538-549.

    Google Scholar 

  38. Eeg-Olofsson, O. 2000. D-2-Hydroxyglutaric aciduria with cerebral, vascular and muscular abnormalities in a 14-year-old-boy. J. Child. Neurol. 15:488-492.

    Google Scholar 

  39. Quest, A. F. G., Eppenberger, H. M., and Wallimann, T. 1990. Two different B-type creatine kinase subunits dimerize in a tissue-specific manner. FEBS Lett. 2:299-304.

    Google Scholar 

  40. Kenyon, G. L. and Reed, G. H. 1983. Creatine kinase: Structure-activity relationships. Adv. Enzymol. 54:367-426.

    Google Scholar 

  41. Furter, R., Furter-Graves, E. M., and Wallimann, T. 1993. Creatine kinase: The reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry 32:7022-7029

    Google Scholar 

  42. Zhou, G., Somasyndaram, T., Blanc, E., Parthasarathy, G., Ellingtin, W. R., and Chapman, M. S. 1998. Transition state structure of arginine kinase: Implications for catalysis of bimolecular reactions. Proc. Natl. Acad. Sci. USA 95:8449-8454.

    Google Scholar 

  43. Brown, C. S. and Cunningham, L. W. 1970. Reaction of reactive sulfhydryl groups of creatine kinase with dansyl chloride. Biochemistry 9:3878-3885.

    Google Scholar 

  44. Reddy, S. R. and Watts, D. C. 1979. Inhibition of creatine kinase by iodoalkanes: Further appraisal of the essential nature of the reactive thiol group. Biochim. Biophys. Acta 569:109-113.

    Google Scholar 

  45. Hou, L. W. and Vollmer, S. 1994. The activity of S-thiomethyl modified creatine kinase is due to the regeneration of free thiol at the active site. Biochim. Biophys. Acta 1205:83-88.

    Google Scholar 

  46. Wolosker, H., Panizzutti, R., and Englender, S. 1996. Inhibition of creatine kinase by S-nitrosoglutathione. FEBS Lett. 392:274-276.

    Google Scholar 

  47. Mekhfi, H., Veksler, V., Mateo, P., Maupoil, V., Rochette, L., and Ventura-Clapier, R. 1996. Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Circ. Res. 78:1016-1027.

    Google Scholar 

  48. Stachowiak, O., Dolder, M., Wallimann, T., and Richter, C. 1998. Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J. Biol. Chem. 273:16694-16699.

    Google Scholar 

  49. Nathan, C. and Xie, Q. W. 1994. Nitric oxide synthases: Roles, tools, and controls. Cell 78:915-918.

    Google Scholar 

  50. Yuan, G., Kaneko, M., Masuda, H., Hon, R. B., Kobayashi, A., and Yamazaki, N. 1992. Decrease in heart mitochondrial creatine kinase activity due to oxygen free radicals. Biochim. Biophys. Acta 1140:78-84

    Google Scholar 

  51. Meister, A. and Anderson, M. E. 1983. Glutathione. Annu. Rev. Biochem. 52:711-760.

    Google Scholar 

  52. Halliwell, B. and Gutteridge, J. M. C. 1990. Role of free radicals and catalytic metal ions in human disease. Methods Enzymol. 186:1-85.

    Google Scholar 

  53. Powers, S. K. and Hamilton, K. 1999. Anti-oxidants and exercise. Clin. Sports Med. 18:525-536

    Google Scholar 

  54. Jane, A., Roskams, I., and Connor, J. R. 1994. Iron, transferrin and ferritin in rat brain during development and aging. J. Neurochem. 63:709-716.

    Google Scholar 

  55. Lipskaya, T. Yu. 2001. Mitochondrial creatine kinase: Properties and function. Biochemistry (Mosc.). 66:1361-1376.

    Google Scholar 

  56. Soboll, S., Brdiczka, D., Jahnke, D., Schmidt, A., Schlattner, U., Wendt, S., Wyss, M., and Wallimann, T. 1999. Octamer-dimer transitions of mitochondrial creatine kinase in hear disease. J. Mol. Cell Cardiol. 31:857-866.

    Google Scholar 

  57. Khuchua, Z. A., Qin, W., Boero, J., Cheng, J., Payne, R. M., Saks, V. A., and Strauss, A. W. 1998. Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues. J. Biol. Chem. 273:22990-22996.

    Google Scholar 

  58. Halliwell, B. 1996. Free radicals, protein and DNA: Oxidative damage versus redox regulation. Biochem. Soc. Trans. 24:1023-1027

    Google Scholar 

  59. Hoffman, G. F., Meier-Augenstein, W., Stocker, S., Surtees, R., Rating, D., and Nyhan, W. L. 1993. Physiology and pathophysiology of organic acids in cerebrospinal fluid. J. Inherit. Metab. Dis. 16:648-669.

    Google Scholar 

  60. Korosheltz, W. J., Jenkins, B. G., Rosen, B. R., and Beal, M. F. 1997. Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann. Neurol. 41:120-130.

    Google Scholar 

  61. Shults, C. W., Beal, M. F., Fontaine, D., Nakano, K., and Haas, R. H. 1998. Absorption, tolerability, and effects of mitochondrial activity of oral coenzyme Q10 in parkisonian patients. Neurology 50:793-795.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, C.G., Bueno, A.R.F., Rosa, R.B. et al. Inhibition of Mitochondrial Creatine Kinase Activity by D-2-Hydroxyglutaric Acid in Cerebellum of Young Rats. Neurochem Res 28, 1329–1337 (2003). https://doi.org/10.1023/A:1024936129908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024936129908

Navigation