Skip to main content
Log in

Microglial Phagocytosis of Dopamine Neurons at Early Phases of Apoptosis

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Transection of the medial forebrain bundle caused apoptosis of dopamine neurons in the rat substantia nigra. Immunohistochemical localization of activated microglia and tyrosine hydroxylase in the axotomized substantia nigra showed that activation of microglia was rapid and OX-6 (MHC-II marker)-positive and ED1 (lysosomal phagocytic marker)-positive microglia were apposed to structurally intact tyrosine hydroxylase-positive dopamine neurons, indicating microglial phagocytosis of degenerating dopamine neurons. The occurrence of microglial phagocytosis at early stages of apoptosis may indicate the evolution of apoptosis into an irreversible state. Alternatively, interventions that suppress early activation of microglia might lead to novel mechanisms for neuron protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adayev, T., Estephan, R., Maserole, S., Mazza, B., Yurkow, E., and Benerjee, P. (1998). Externalization of phosphatidylserine may not be an early signal of apoptosis in neuronal cells, but only the phosphtidylserine-displaying apoptotic cells are phagocytosed by microglia. J. Neurochem. 71:1854–1864.

    PubMed  Google Scholar 

  • Bauer, J., Sminia, T., Wouterlood, F. G., and Dijkstra, C. D. (1994). Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J. Neurosci. Res. 38:365–375.

    PubMed  Google Scholar 

  • Blinzinger, K., and Kreutzberg, G. (1968). Displacement of synaptic terminals from regenerating motor neurons by microglial cells. Z. Zellforsch. Mikrosk. Anat. 85:145–157.

    PubMed  Google Scholar 

  • Cho, S., Park, E. M., Kim, Y., Liu, N., Gal, J., Volpe, B. T., and Joh, T. H. (2001). Early c-fos induction after cerebral ischemia: A possible neuroprotective role. J. Cereb. Blood Flow Metab. 21:550–556.

    PubMed  Google Scholar 

  • Cho, S., Volpe, B. T., Bae, Y., Hwang, O., Choi, H. J., Gal, J., Park, L. C., Chu, C. K., Du, J., and Joh, T. H. (1999). Blockade of tetrahydrobiopterin synthesis protects neurons after transient forebrain ischemia in rat: A novel role for the cofactor. J. NeuroSci. 19:10–20.

    PubMed  Google Scholar 

  • Clarke, P. G. H. (1998). Apoptosis versus necrosis: How valid a dichotomy for neurons. In Koliatos, V. E., and Rata, R. R. (eds.), Cell Death and Diseases of the Nervous System, Hamana Press, Totowa, NJ, pp. 3–28.

    Google Scholar 

  • Fadok, V. A., Bratton, D. L., and Henson, P. M. (2001). Phagocyte receptor for apoptotic cells: Recognition, uptake, and consequences. J. Clin. Invest. 108:957–962.

    PubMed  Google Scholar 

  • Fadok, V. A., Bratton, D. L., Rose, D. M., Pearson, A., and Ezekewitz, R. A. (2000). A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90.

    PubMed  Google Scholar 

  • Flaris, N. A., Densmore, T. L., Molleston, M. C., and Hickey, W. F. (1993). Characterization of microglia and macrophages in the central nervous system of rats: Definition of the differential expression of molecules using standard and novel monoclonal antibodies in normal CNS and in four models of parenchymal reaction. Glia 7:34–40.

    PubMed  Google Scholar 

  • Graeber, M. B., Lez-Redondo, F., Ikoma, E., Ishikawa, M., Imai, Y., Nakajima, K., Kreuzberg, G. W., and Kohsaka, S. (1998). The microglia /macrophage response in the neonatal rat facial nucleus following axotomy. Brain Res. 813:241–253.

    PubMed  Google Scholar 

  • Graeber, M. B., Streit, W. J., Kiefer, R., Shoen, S. W., and Kreutzberg, G. W. (1990). New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J. Neuroimmunol. 27:121–132.

    PubMed  Google Scholar 

  • Huynh, M. N., Fadok, V. A., and Henson, P. M. (2002). Phosphatidyloserine-dependent ingestion of apoptotic cells promotes TGF-b1secretion and the resolution of inflammation. J. Clin. Invest. 109:41–50.

    PubMed  Google Scholar 

  • Kagan, V. E., Fabisiak, J. P., Shvedova, A. A., Tyurina, Y. Y., Tyurin, V. A., Schor, N. F. and Kawai, K. (2000). Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett. 477:1–7.

    PubMed  Google Scholar 

  • Koliatsos, V. E., and Mocchetti, I. (1998). Trophic factors as therapeutic agents for diseases characterized by neuronal death. In Koliatsos, V. E., and Rata, R. R., (eds.), Cell Death and Diseases of the Nervous System, Humana Press, Totowa, NJ, pp. 545–591.

    Google Scholar 

  • Kreutzberg, G. W. (1996). Microglia: A sensor for pathological events in the CNS. Trends Neurosci. 19:312–318.

    PubMed  Google Scholar 

  • Kreutzberg, G. W., and Barron, K. D. (1978). 5'-Nucleotidase of microglial cells in the facial nucleus during axonal reaction. J. Neurocytol. 7:601–610.

    PubMed  Google Scholar 

  • Lassmann, H., Schmied, M., Vass, K., and Hickey, W. F. (1993). Bone marrow derived elements and resident microglia in brain inflammation. Glia:19–24.

  • McGeer, P., Itagaki, S., Boyes, B. E., and McGeer, E. G. (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38:1285–1291.

    PubMed  Google Scholar 

  • Pittman, R. N., Messam, C. A., and Mills, J. C. (1998). Asynchronous death as a characteristics feature of apoptosis. In Koliatos, V. E., and Rata, R. R. (eds.), Cell Death and Diseases of the Nervous System, Hamana Press, Totowa, NJ, pp. 29–44.

    Google Scholar 

  • Platt, N., da Silva, R. P., and Gordon, S. (1998). Recognizing death: The phagocytosis of apoptotic cells. Trends Cell Biol. 8:365–372.

    PubMed  Google Scholar 

  • Raivich, G., Bohatschek, M., Kloss, C. U. A., Werner, A., Jones, L. L., and Kreutzberg, G. W. (1999). Neuroglial activation repertoire in the injured brain: Graded response, molecular mechanisms and cues to physiological function. Brain. Res. Rev. 30:77–105.

    PubMed  Google Scholar 

  • Reis, O. J., and Ross, R. A. (1973). Dynamic changes in brain dopamine β-hydroxylase activity during anterograde and retrograde reactions to injury of cerebral horadrenergic neurons. Brain Res. 57:307–326.

    PubMed  Google Scholar 

  • Ross, R. A., and Reis, O. J. (1975). Reversible changes in the accumulation and activities of tyrosine hydroxylase and dopamine in neurons of nucleus locas cerulens during the retrograde reactrons. Brain Res. 92:57–72.

    PubMed  Google Scholar 

  • Roy, M., and Sapolsky, R. (2000). Neuronal apoptosis in acute necrotic insults: Why is this subject such a mess? Trends NeuroSci. 22:419–422.

    Google Scholar 

  • Savill, J. (1998). Apoptosis. Phagocytic docking without shocking. Nature 392:442–443.

    PubMed  Google Scholar 

  • Savill, J., and Fadok, V. A. (2000). Corpse clearance defines the meaning of cell death. Nature 407:784–788.

    PubMed  Google Scholar 

  • Streit, W. J., Graeber, M. B., and Kreutzberg, G. W. (1988). Functional plasticity of microglia. Glia 1:301–307.

    PubMed  Google Scholar 

  • Streit, W. J., Graeber, M. B., and Kreutzberg, G. W. (1989). Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp. Neurol. 105:115–126.

    PubMed  Google Scholar 

  • Streit, W. J., and Kreutzberg, G. W. (1988). Response of endogenous glial cells to motor neuron degeneration induced by toxin ricin. J. Comp. Neurol. 268:248–263.

    PubMed  Google Scholar 

  • Sugama, S., Cho, B. P., DeGiorgio, L. A., Shimizu, Y., Kim, S. S., Kim, Y. S., Shin, D. H., Volpe, B. T., Reis, D. J., Cho, S., and Joh, T. H. (2003). Temporal and sequential analysis of microglia in the substantia nigra following medial forebrain bundle axotomy in rat. Neuroscience 16:925–933.

    Google Scholar 

  • Tatton, N. A., and Kish, S. J. (1997). In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77:1037–1048.

    PubMed  Google Scholar 

  • Weiser, M., Baker, H., Wessel, T., and Joh, T. H. (1993). Axetomy-induced differential gene induction in neurons of the locus ceroleus and substantia nigra. Mol. Brain Res. 17:319–327.

    PubMed  Google Scholar 

  • Witting, A. P., Muller, A., Herrmann, H., Kettenmann, and C. Nolte (2000). Phagocytic clearance of apoptotic neurons by microglia/brain macrophages in vitro: Involvement of lectin-, integrin-, and phosphatidylserine-mediated recognition. J. Neurochem. 75:1060–1070.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong H. Joh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, B.P., Sugama, S., Shin, D.H. et al. Microglial Phagocytosis of Dopamine Neurons at Early Phases of Apoptosis. Cell Mol Neurobiol 23, 551–560 (2003). https://doi.org/10.1023/A:1025024129946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025024129946

Navigation