Skip to main content
Log in

A physiological function of serum proteoglycan bikunin: The chondroitin sulfate moiety plays a central role

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Bikunin is a small chondroitin sulfate proteoglycan that occurs in blood as the light chain of inter-α-trypsin inhibitor (ITI) family members. The relatively short chondroitin sulfate chain of bikunin shows a characteristic pattern of sulfation in both the linkage region and the chondroitin sulfate backbone. To the internal N-acetylgalactosamines in the lower sulfated portion near the non-reducing end, up to two “side” proteins could bind covalently via a unique ester bond to form “core protein-glycosaminoglycan-side protein” complexes, the ITI family. ITI molecules are synthesized in hepatocytes, and then secreted into circulation at high concentrations. In the presence of yet unidentified factors, the side proteins are transferred from chondroitin sulfate to hyaluronan by a transesterification reaction to form what has been described as the Serum-derived Hyaluronan-Associated Protein (SHAP)-hyaluronan complex. The formation of this complex is required for the stabilization of the extracellular matrix of fibroblasts, mesothelial cells, and cumuli oophori. When the gene for bikunin is inactivated, female mice exhibit severe infertility as a consequence of a defect of the side protein precursor in forming a complex with the hyaluronan in cumulus oophorus before ovulation. Therefore, the chondroitin sulfate moiety of bikunin is essential for presenting SHAP to hyaluronan, which is indispensable for ovulation and fertilization in mammals. Published in 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balduyck M, Mizon C, Loutfi H, Richet C, Roussel P, Mizon J, The major human urinary trypsin inhibitor is a proteoglycan, Eur J Biochem 158, 417–22 (1986).

    PubMed  Google Scholar 

  2. Imanari T, Shinbo A, Ochiai H, Ikei T, Koshiishi I, Toyoda H, Study on proteoglycans having low-sulfated chondroitin 4-sulfate in human urine and serum, J Pharmacobiodyn 15, 231–7 (1992).

    PubMed  Google Scholar 

  3. Mizon C, Balduyck M, Albani D, Michalski C, Burnouf T, Mizon J, Development of an enzyme-linked immunosorbent assay for human plasma inter-alpha-trypsin inhibitor (ITI) using specific antibodies against each of the H1 and H2 heavy chains, J Immunol Methods 190, 61–70 (1996).

    PubMed  Google Scholar 

  4. Rudman D, Chawla RK, Wadsworth AD, Nixon DW, Schwartz M, A system of cancer-related urinary glycoproteins: Biochemical properties and clinical applications, Trans Assoc Am Physicians 90, 286–99 (1977).

    PubMed  Google Scholar 

  5. Chawla RK, Miller FW, Lawson DH, Nixon DW, Urinary cancerrelated protein EDC1 and serum inter-alpha trypsin inhibitor in breast cancer, Tumour Biol 5, 351–63 (1984).

    PubMed  Google Scholar 

  6. Gebhard W, Hochstrasser K, Fritz H, Enghild JJ, Pizzo SV, Salvesen G, Structure of inter-alpha-inhibitor (inter-alpha-trypsin inhibitor) and pre-alpha-inhibitor: Current state and proposition of a new terminology, Biol Chem Hoppe Seyler 371(suppl), 13–22 (1990).

    PubMed  Google Scholar 

  7. Hochstrasser K, Schonberger OL, Rossmanith I, Wachter E, Kunitz-type proteinase inhibitors derived by limited proteolysis of the inter-alpha-trypsin inhibitor, V. Attachments of carbohydrates in the human urinary trypsin inhibitor isolated by affinity chromatography, Hoppe Seylers Z Physiol Chem 362, 1357–62 (1981).

    PubMed  Google Scholar 

  8. Chirat F, Balduyck M, Mizon C, Laroui S, Sautiere P, Mizon J, A chondroitin-sulfate chain is located on serine-10 of the urinary trypsin inhibitor, Int J Biochem 23, 1201–3 (1991).

    PubMed  Google Scholar 

  9. Brinkmann T, Weilke C, Kleesiek K, Recognition of acceptor proteins by UDP-D-xylose proteoglycan core protein beta-DXylosyltransferase, J Biol Chem 272, 11171–5 (1997).

    PubMed  Google Scholar 

  10. Toyoda H, Kobayashi S, Sakamoto S, Toida T, Imanari T, Structural analysis of a low-sulfated chondroitin sulfate chain in human urinary trypsin inhibitor, Biol Pharm Bull 16, 945–7 (1993).

    PubMed  Google Scholar 

  11. Enghild JJ, Thogersen IB, Cheng F, Fransson L, Roepstorff P, Rahbek-Nielsen H, Organization of the Inter-alpha-inhibitor heavy chains on the chondroitin sulfate originating from ser10 of bikunin: Posttranslational modification of IalphaI-derived bikunin, Biochemistry 38, 11804–13 (1999).

    PubMed  Google Scholar 

  12. Mizon C, Mairie C, Balduyck M, Hachulla E, Mizon J, The chondroitin sulfate chain of bikunin-containing proteins in the interalpha-inhibitor family increases in size in inflammatory diseases, Eur J Biochem 268, 2717–24 (2001).

    PubMed  Google Scholar 

  13. Yuki Y, Nakagawa T, Kato K, Amino acid sequences for human urinary bikunin (trypsin inhibitor) isomers, Biol Pharm Bull 18, 1599–601 (1995).

    PubMed  Google Scholar 

  14. Yamada S, Oyama M, Yuki Y, Kato K, Sugahara K, The uniform galactose 4-sulfate structure in the carbohydrate-protein linkage region of human urinary trypsin inhibitor, Eur J Biochem 233, 687–93 (1995).

    PubMed  Google Scholar 

  15. Yamada S, Oyama M, Kinugasa H, Nakagawa T, Kawasaki T, Nagasawa S, Khoo KH, Morris HR, Dell A, Sugahara K, The sulphated carbohydrate-protein linkage region isolated from chondroitin 4-sulphate chains of inter-alpha-trypsin inhibitor in human plasma, Glycobiology 5, 335–41 (1995).

    PubMed  Google Scholar 

  16. Kitagawa H, Oyama M, Masayama K, Yamaguchi Y, Sugahara K, Structural variations in the glycosaminoglycan-protein linkage region of recombinant decorin expressed in Chinese hamster ovary cells, Glycobiology 7, 1175–80 (1997).

    PubMed  Google Scholar 

  17. Toyoda H, Ikei T, Demachi Y, Toida T, Imanari T, Structural analysis of the N-linked oligosaccharides from human urinary trypsin inhibitor, Chem Pharm Bull (Tokyo) 40, 2882–4 (1992).

    Google Scholar 

  18. Kaumeyer JF, Polazzi JO, Kotick MP, The mRNA for a proteinase inhibitor related to HI30 domain of inter-alpha-trypsin inhibitor also encodes alpha-1-microglobulin(protein HC), Nucleic acid Res 14, 7839–50 (1986).

    PubMed  Google Scholar 

  19. Sjoberg EM, Fries E, Biosynthesis of bikunin (urinary trypsin inhibitor) in rat hepatocytes, Arch Biochem Biophys 295, 217–22 (1992).

    PubMed  Google Scholar 

  20. Bratt T, Olsson H, Sjoberg EM, Jergil B, Akerstrom B, Cleavage of the alpha-1-microglobulin-bikunin precursor is localized to the Golgi apparatus of rat liver cells, Biochimica et Biophysica Acta, 1157, 147–54 (1993).

    PubMed  Google Scholar 

  21. Brat T, Cedervall T, Akerstrom B, Processing and secretion of rat α-1-microglobulin-bikunin expressed in eukaryotic cell lines, FEBS Lett 354, 57–61 (1994).

    PubMed  Google Scholar 

  22. Steinbuch M, Loeb J, Isolation of an alpha-2 globulin from human plasma, Nature 192, 1196 (1961).

    Google Scholar 

  23. Salier JP, Diarra-Mehrpour M, Sesboue R, Bourguignon J, Benarous R, Ohkubo I, Kurachi S, Kurachi K, Martin JP, Isolation and characterization of cDNAs encoding the heavy chain of human inter-alpha-trypsin inhibitor (I alpha TI): Unambiguous evidence for multipolypeptide chain structure of I alpha TI, Proc Natl Acad Sci USA 84, 8272–6 (1987).

    PubMed  Google Scholar 

  24. Schreitmuller T, Hochstrasser K, Reisinger PW, Wachter E, Gebhard W, cDNA cloning of human inter-alpha-trypsin inhibitor discloses three different proteins, Biol Chem Hoppe Seyler 368, 963–70 (1987).

    PubMed  Google Scholar 

  25. Gebhard W, Leysath G, Schreitmuller T, Inter-alpha-trypsin inhibitor is a complex of three different protein species, Biol Chem Hoppe Seyler 369 (suppl), 19–22 (1988).

    PubMed  Google Scholar 

  26. Jessen TE, Faarvang KL, Ploug M, Carbohydrate as covalent crosslink in human inter-alpha-trypsin inhibitor: A novel plasma protein structure, FEBS Lett 230, 195–200 (1988).

    PubMed  Google Scholar 

  27. Enghild JJ, Thogersen IB, Pizzo SV, Salvesen G, Analysis of inter-alpha-trypsin inhibitor and a novel trypsin inhibitor, prealphatrypsin inhibitor, from human plasma. Polypeptide chain stoichiometry and assembly by glycan. J Biol Chem 264, 15975–81 (1989).

    PubMed  Google Scholar 

  28. Balduyck M, Laroui S, Mizon C, Mizon J, A proteoglycan related to the urinary trypsin inhibitor (UTI) links the two heavy chains of inter-alpha-trypsin inhibitor, Biol Chem Hoppe Seyler 370, 329–36 (1989).

    PubMed  Google Scholar 

  29. Enghild JJ, Salvesen G, Hefta SA, Thogersen IB, Rutherfurd S, Pizzo SV, Chondroitin 4-sulfate covalently cross-links the chains of the human blood protein pre-alpha-inhibitor, J Biol Chem 266, 747–51 (1991).

    PubMed  Google Scholar 

  30. Enghild JJ, Salvesen G, Thogersen IB, Valnickova Z, Pizzo SV, Hefta SA, Presence of the protein-glycosaminoglycan-protein covalent cross-link in the inter-alpha-inhibitor-related proteinase inhibitor heavy chain 2/bikunin, J Biol Chem 268, 8711–6 (1993).

    PubMed  Google Scholar 

  31. Morelle W, Capon C, Balduyck M, Sautiere P, Kouach M, Michalski C, Fournet B, Mizon J, Chondroitin sulphate covalently cross-links the three polypeptide chains of inter-alpha-trypsin inhibitor, Eur J Biochem 221, 881–8 (1994).

    PubMed  Google Scholar 

  32. Chan P, Salier JP, Mouse alpha-1-microglobulin/bikunin precursor: cDNA analysis, gene evolution and physical assignment of the gene next to the orosomucoid locus, Biochemica et Biophysica Acta 1174, 195–200 (1993).

    Google Scholar 

  33. Blom AM, Morgelin M, Oyen M, Jarvet J, Fries E, Structural characterization of inter-alpha-inhibitor. Evidence for an extended shape, J Biol Chem 274, 298–304 (1999).

    PubMed  Google Scholar 

  34. Heron A, Bourguignon J, Calle A, Borghi H, Sesboue R, Diarra-Mehrpour M, Martin JP, Post-translational processing of the inter-alpha-trypsin inhibitor in the human hepatoma HepG2 cell line, Biochem J 302(Pt 2), 573–80 (1994).

    PubMed  Google Scholar 

  35. Thuveson M, Fries E, The low pH in trans-Golgi triggers autocatalytic cleavage of pre-alpha-inhibitor heavy chain precursor, J Biol Chem 275, 30996–1000 (2000).

    PubMed  Google Scholar 

  36. Blom AM, Thuveson M, Fries E, Intracellular coupling of bikunin and the heavy chain of rat pre-alpha-inhibitor in COS-1 cells, Biochem J 328, 185–91 (1997).

    PubMed  Google Scholar 

  37. Kaczmarczyk A, Thuveson M, Fries E, Intracellular Coupling of the Heavy Chain of Pre-alpha-inhibitor to Chondroitin Sulfate, J Biol Chem 277, 13578–82 (2002).

    PubMed  Google Scholar 

  38. Yoneda M, Suzuki S, Kimata K, Hyaluronic acid associated with the surfaces of cultured fibroblasts is linked to a serum-derived 85-kDa protein, J Biol Chem 265, 5247–57 (1990).

    PubMed  Google Scholar 

  39. Huang L, Yoneda M, Kimata K, A serum-derived hyaluronanassociated protein (SHAP) is the heavy chain of the inter alphatrypsin inhibitor, J Biol Chem 268, 26725–30 (1993).

    PubMed  Google Scholar 

  40. Zhao M, Yoneda M, Ohashi Y, Kurono S, Iwata H, Ohnuki Y, Kimata K, Evidence for the covalent binding of SHAP, heavy chains of inter-alpha-trypsin inhibitor, to hyaluronan, J Biol Chem 270, 26657–63 (1995).

    PubMed  Google Scholar 

  41. Yoneda M, Zhao M, Zhuo L, Watanabe H, Yamada Y, Huang L, Nagasawa S, Nishimura H, Shinomura T, Isogai Z, Kimata K, Roles of inter-α-trypsin inhibitor and hyaluronan-binding proteoglycans in hyaluronan-rich matrix formation. In New frontiers in Medical Sciences: Redefining Hyaluronan, edited by Abatangelo G, Weigel PH (Elsevier Science B.V., 2000), pp. 21–30.

  42. Blom A, Pertoft H, Fries E, Inter-alpha-inhibitor is required for the formation of the hyaluronan-containing coat on fibroblasts and mesothelial cells, J Biol Chem 270, 9698–701 (1995).

    PubMed  Google Scholar 

  43. Salustri A, Yanagishita M, Hascall VC, Synthesis and accumulation of hyaluronic acid and proteoglycans in the mouse cumulus cell-oocyte complex during follicle-stimulating hormone-induced mucification, J Biol Chem 264, 13840–7 (1989).

    PubMed  Google Scholar 

  44. Camaioni A, Hascall VC, Yanagishita M, Salustri A, Effects of exogenous hyaluronic acid and serum on matrix organization and stability in the mouse cumulus cell-oocyte complex, J Biol Chem 268, 20473–81 (1993).

    Google Scholar 

  45. Chen L, Mao SJT, Larsen WJ, Identification of a factor in fetal bovine serum that stabilizes the cumulus extracellular matrix: A role for a member of the inter-α-trypsin inhibitor family, J Biol Chem 267, 12380–6 (1992).

    PubMed  Google Scholar 

  46. Castillo GM, Templeton DM, Subunit structure of bovine ESF (extracellular-matrix stabilizing factor(s)). A chondroitin sulfate proteoglycan with homology to human I alpha I (inter-alphatrypsin inhibitors), FEBS Lett 318, 292–6 (1993).

    PubMed  Google Scholar 

  47. Zhuo L, Yoneda M, Zhao M, Yingsung W, Yoshida N, Kitagawa Y, Kawamura K, Suzuki T, Kimata K, Defect in SHAP-Hyaluronan complex causes severe female infertility. A study by inactivation of the bikunin gene in mice, J Biol Chem 276, 7693–6 (2001).

    PubMed  Google Scholar 

  48. Wisniewski HG, Burgess WH, Oppenheim JD, Vilcek J, TSG-6, an arthritis-associated hyaluronan binding protein, forms a stable complex with the serum protein inter-alpha-inhibitor, Biochemistry 33, 7423–9 (1994).

    PubMed  Google Scholar 

  49. Fries E, Blom AM, Bikunin-not just a plasma proteinase inhibitor, Int J Biochem Cell Biol 32, 125–37 (2000).

    PubMed  Google Scholar 

  50. Yingsung W, Zhuo L, Morgelin M, Yoneda M, Kida T, Watanabe H, Ishiguro N, Iwata H, Kimata K, Molecular heterogeneity of the SHAP-hyaluronan complex: Isolation and characterization of the complex in synovial fluid from patients with rheumatoid arthritis, J Biol Chem (2003) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuo, L., Salustri, A. & Kimata, K. A physiological function of serum proteoglycan bikunin: The chondroitin sulfate moiety plays a central role. Glycoconj J 19, 241–247 (2002). https://doi.org/10.1023/A:1025331929373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025331929373

Navigation