Skip to main content
Log in

Glucocorticoid-induced apoptosis in human eosinophils: Mechanisms of action

  • Published:
Apoptosis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Prominent blood and tissue eosinophilia is clinically manifested in a number of inflammatory states, particularly in allergic diseases. Corticosteroids are the most effective anti-inflammatory drugs used in the treatment of eosinophilic disorders, including bronchial asthma. Their beneficial effects result, among others, from (i) the suppression of the synthesis and the effects of eosinophil survival factors, (ii) the direct induction of eosinophil apoptosis and (iii) the stimulation of their engulfment by professional phagocytic cells. Failure of steroids to propagate apoptotic signals and to promote eosinophil clearance may explain the corticoresistance observed in a proportion of asthmatic patients. Accordingly, studies on the intracellular mechanisms involved in eosinophil corticosensitivity and resistance may provide a valuable tool for identifying new and selective molecular targets to therapeutically resolve otherwise persistent eosinophilic inflammation. In this review, the intracellular cascade of events involved in corticosteroid-mediated eosinophil apoptotic death is discussed and compared to the signalling pathway governing this process in the established model of dexamethasone-induced thymocyte apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dombrowicz D, Capron M. Eosinophils, allergy and parasites. Curr Opin Immunol 2001; 13: 716-720.

    Google Scholar 

  2. Gleich GJ. Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol 2000; 105: 651-663.

    Google Scholar 

  3. Wardlaw AJ, Moqbel R, Kay AB. Eosinophils: Biology and role in disease. Adv Immunol 1995; 60: 151-266.

    Google Scholar 

  4. Druilhe A, Wallaert B, Tsicopoulos A, et al. Apoptosis, proliferation, and expression of Bcl-2, Fas, and Fas ligand in bronchial biopsies from asthmatics. Am J Respir Cell Mol Biol 1998; 19: 747-757.

    Google Scholar 

  5. Foresi A, Teodoro C, Leone C, et al. Eosinophil apoptosis in induced sputum from patients with seasonal allergic rhinitis and with asymptomatic and symptomatic asthma. Ann Allergy Asthma Immunol 2000; 84: 411-416.

    Google Scholar 

  6. Vignola AM, Chanez P, Chiappara G, et al. Evaluation of apoptosis of eosinophils, macrophages, and T lymphocytes in mucosal biopsy specimens of patients with asthma and chronic bronchitis. J Allergy Clin Immunol 1999; 103: 563- 573.

    Google Scholar 

  7. Fan GK, Itoh T, Imanaka M, Fujieda S, Takenaka H. Eosinophilic apoptosis in sinus mucosa: Relationship to tissue eosinophilia and its resolution in allergic sinusitis. J Allergy Clin Immunol 2000; 106: 551-558.

    Google Scholar 

  8. Wedi B, Raap U, Kapp A. Significant delay of apoptosis and Fas resistance in eosinophils of subjects with intrinsic and extrinsic type of atopic dermatitis. Int Arch Allergy Immunol 1999; 118: 234-235.

    Google Scholar 

  9. Kankaanranta H, Lindsay MA, Giembycz MA, Zhang X, Moilanen E, Barnes PJ. Delayed eosinophil apoptosis in asthma. J Allergy Clin Immunol 2000; 106: 77-83.

    Google Scholar 

  10. Tai PC, Sun L, Spry CJ. Effects of IL-5, granulocyte/ macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro. Clin Exp Immunol 1991; 85: 312-316.

    Google Scholar 

  11. Yamaguchi Y, Suda T, Ohta S, Tominaga K, Miura Y, Kasahara T. Analysis of the survival of mature human eosinophils: Interleukin-5 prevents apoptosis in mature human eosinophils. Blood 1991; 78: 2542-2547.

    Google Scholar 

  12. Simon HU, Blaser K. Inhibition of programmed eosinophil death:Akey pathogenic event for eosinophilia? Immunol Today 1995; 16: 53-55.

    Google Scholar 

  13. Meagher LC, Cousin JM, Seckl JR, Haslett C. Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 1996; 156: 4422- 4428.

    Google Scholar 

  14. Druilhe A, Cai Z, Haile S, Chouaib S, Pretolani M. Fasmediated apoptosis in cultured human eosinophils. Blood 1996; 87: 2822-2830.

    Google Scholar 

  15. Druilhe A, Arock M, Le Goff L, Pretolani M. Human eosinophils express Bcl-2 family proteins: Modulation of Mcl-1 expression by IFN-?. Am J Respir Cell Mol Biol 1998; 18: 315-322.

    Google Scholar 

  16. Gounni AS, Gregory B, Nutku E, et al. Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood 2000; 96: 2163- 2171.

    Google Scholar 

  17. Hoontrakoon R, Chu HW, Gardai SJ, et al. Interleukin-15 inhibits spontaneous apoptosis in human eosinophils via autocrine production of granulocyte macrophage-colony stimulating factor and nuclear factor-kappaB activation. Am J Respir Cell Mol Biol 2002; 26: 404-412.

    Google Scholar 

  18. Horie S, Okubo Y, Hossain M, et al. Interleukin-13 but not interleukin-4 prolongs eosinophil survival and induces eosinophil chemotaxis. Intern Med 1997; 36: 179-185.

    Google Scholar 

  19. Valerius T, Repp R, kalden JR, Platzer E. Effects of IFN on human eosinophils in comparison with other cytokines. A novel class of eosinophil activators with delayed onset of action. J Immunol 1990; 145: 2950-2958.

    Google Scholar 

  20. Nutku E, Zhuang Q, Soussi-Gounni A, Aris F, Mazer BD, Hamid Q. Functional expression of IL-12 receptor by human eosinophils: IL-12 promotes eosinophil apoptosis. J Immunol 2001; 167: 1039-1046.

    Google Scholar 

  21. Wedi B, Raap U, Lewrick H, Kapp A. IL-4-induced apoptosis in peripheral blood eosinophils. J Allergy Clin Immunol 1998; 102: 1013-1020.

    Google Scholar 

  22. Alam A, Braun MY, Hartgers F, et al. Specific activation of the cysteine protease CPP32 during the negative selection of T cells in the thymus. J Exp Med 1997; 186: 1503- 1512.

    Google Scholar 

  23. Fujihara S, Ward C, Dransfield I, et al. Inhibition of nuclear factor-kappa B activation un-masks the ability of TNF-alpha to induce human eosinophil apoptosis. Eur J Immunol. 2002; 32: 457-466.

    Google Scholar 

  24. Hamada A, Watanabe N, Ohtomo H, Matsuda H. Nerve growth factor enhances survival and cytotoxic activity of human eosinophils. Br J Haematol 1996; 93: 299-302.

    Google Scholar 

  25. Peacock CD, Misso NL, Watkins DN, Thompson PJ. PGE2 and dibutyryl cyclic adenosine monophosphate prolong eosinophil survival in vitro. J Allergy Clin Immunol 1999; 104: 153-162.

    Google Scholar 

  26. Robertson NM, Zangrilli JG, Steplewski A, et al. Differential expression of TRAIL and TRAIL receptors in allergic asthmatics following segmental antigen challenge: Evidence for a role of TRAIL in eosinophil survival. J Immunol 2002; 169: 5986-5996.

    Google Scholar 

  27. Hebestreit H, Yousefi S, Balatti I, et al. Expression and function of the Fas receptor on human blood and tissue eosinophils. Eur J Immunol 1996; 26: 1775-1780.

    Google Scholar 

  28. Luttmann W, Dauer E, Schmidt S, et al. Effects of interferongamma and tumour necrosis factor-alpha on CD95/Fas ligandmediated apoptosis in human blood eosinophils. Scand J Immunol. 2000; 51: 54-59.

    Google Scholar 

  29. Matsumoto K, Schleimer RP, Saito H, Iikura Y, Bochner BS. Induction of apoptosis in human eosinophils by anti-Fas antibody treatment in vitro. Blood 1995; 86: 1437-1443.

    Google Scholar 

  30. Tsuyuki S, Bertrand C, Erard F, et al. Activation of the Fas receptor on lung eosinophils leads to apoptosis and the resolution of eosinophilic inflammation of the airways. J Clin Invest 1995; 96: 2924-2931.

    Google Scholar 

  31. Saita N, Yamanaka T, Kohrogi H, Ando M, Hirashima M. Difference in apoptotic function between eosinophils from peripheral blood and bronchoalveolar lavage in chronic eosinophilic pneumonia. Int Arch Allergy Immunol 1999; 120: 91-94.

    Google Scholar 

  32. Lee E, Robertson T, Smith J, Kilfeather S. Leukotriene receptor antagonists and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals. Am J Respir Crit Care Med 2000; 161: 1881-1886.

    Google Scholar 

  33. Gervais FG, Cruz RP, Chateauneuf A, et al. Selective modulation of chemokinesis, degranulation, and apoptosis in eosinophils through the PGD2 receptors CRTH2 and DP. J Allergy Clin Immunol 2001; 108: 982-988.

    Google Scholar 

  34. Ward C, Dransfield I, Murray J, Farrow SN, Haslett C, Rossi AG. Prostaglandin D2 and its metabolites induce caspasedependent granulocyte apoptosis that is mediated via inhibition of I kappa B alpha degradation using a peroxisome proliferator-activated receptor-gamma-independent mechanism. J Immunol 2002; 168: 6232-6243.

    Google Scholar 

  35. Anwar AR, Moqbel R, Walsh GM, Kay AB, Wardlaw AJ. Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 1993; 177: 839-843.

    Google Scholar 

  36. Chihara J, Kakazu T, Higashimoto I, et al. Signalling through the beta2 integrin prolongs eosinophil survival. J Allergy Clin immunol. 2000; 106: S99-S103.

    Google Scholar 

  37. Kim JT, Gleich GJ, Kita H. Roles of CD9 molecules in survival and activation of human eosinophils. J Immunol 1997; 159: 926-933.

    Google Scholar 

  38. Kim JT, Schimming AW, Kita H. Ligation of Fc gamma RII (CD32) pivotally regulates survival of human eosinophils. J Immunol 1999; 162: 4253-4259.

    Google Scholar 

  39. Ohkawara Y, Lim KG, Xing Z, et al. CD40 expression by human peripheral blood eosinophils. J Clin Invest 1996; 97: 1761-1766.

    Google Scholar 

  40. Tourkin A, Anderson T, LeRoy EC, Hoffman S. Eosinophil adhesion and maturation is modulated by laminin. Cell Adhes Commun 1993; 1: 161-176.

    Google Scholar 

  41. Blaylock MG, Sexton DW, Walsh GM. Ligation of CD45 and the isoforms CD45RA and CD45RB accelerates the rate of constitutive apoptosis in human eosinophils. J Allergy Clin Immunol 1999; 104: 1244-1250.

    Google Scholar 

  42. Nutku E, Aizawa H, Hudson SA, Bochner BS. Ligation of Siglec-8: A selective mechanism for induction of human eosinophil apoptosis. Blood 2003; 101: 5014-5020.

    Google Scholar 

  43. Walsh GM, Williamson ML, Symon FA, Willars GB, Wardlaw AJ. Ligation of CD69 induces apoptosis and cell death in human eosinophils cultured with granulocytemacrophage colony-stimulating factor. Blood 1996; 87: 2815- 2821.

    Google Scholar 

  44. Beauvais F, Michel L, Dubertret L. The nitric oxide donors, azide and hydroxylamine, inhibit the programmed cell death of cytokine-deprived human eosinophils. FEBS Lett 1995; 361: 229-232.

    Google Scholar 

  45. Hebestreit H, Dibbert B, Balatti I, et al. Disruption of Fas receptor signalling by nitric oxide in eosinophils. J Exp Med 1998; 187: 415-425.

    Google Scholar 

  46. Takanaski S, Nonaka R, Xing Z, O'Byrne P, Dolovich J, Jordana M. Interleukin 10 inhibits lipopolysaccharideinduced survival and cytokine production by human peripheral blood eosinophils. J Exp Med 1994; 180: 711- 715.

    Google Scholar 

  47. Ward C, Chilvers ER, Lawson MF, et al. NF-kappaB activation is a critical regulator of human granulocyte apoptosis in vitro. J Biol Chem 1999; 274: 4309-4318.

    Google Scholar 

  48. Wong CK, Zhang JP, Lam CW, Ho CY, Hjelm NM. Sodium salicylate-induced apoptosis of human peripheral blood eosinophils is independent of the activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Int Arch Allergy Immunol 2000; 121: 44-52.

    Google Scholar 

  49. Barnes PJ. Mechanisms of action of glucocorticoids in asthma. Am J Respir Crit Care Med 1996; 154: S21-S27.

    Google Scholar 

  50. Kawabori S, Soda K, Perdue MH, Bienenstock J. The dynamics of intestinal eosinophil depletion in rats treated with dexamethasone. Lab Invest 1991; 64: 224-233.

    Google Scholar 

  51. Uller L, Persson CG, Kallstrom L, Erjefalt JS. Lung tissue eosinophils may be cleared through luminal entry rather than apoptosis: Effects of steroid treatment. Am J Respir Crit Care Med 2001; 164: 1948-1956.

    Google Scholar 

  52. Woolley KL, Gibson PG, Carty K, Wilson AJ, Twaddel SH, Woolley MJ. Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am J Respir Crit Care Med 1996; 154: 237-243.

    Google Scholar 

  53. Lim LHK, Flower RJ, Perretti M, Das AM. Glucocorticoid receptor activation reduces CD11b and CD49d levels on murine eosinophils. Characterization and functional relevance. Am J Respir Cell Mol Biol 2000; 22: 693-701.

    Google Scholar 

  54. Adachi T, Motojima S, Hirata A, et al. Eosinophil apoptosis caused by theophylline, glucocorticoids, and macrolides after stimulation with IL-5. J Allergy Clin Immunol 1996; 98: S207- S215.

    Google Scholar 

  55. Kitagaki K, Niwa S, Hoshiko K-I, Nagai H, Hayashi S, Totsuka T. Augmentation of apoptosis in bronchial exuded rat eosinopils by cyclosporin A. Biochem Biophys Res Comm 1996; 222: 71-77.

    Google Scholar 

  56. Nittoh T, Fujimori H, Kozumi Y, Ishihara K, Mue S, Ohuchi K. Effects of glucocorticoids on apoptosis of infiltrated eosinophils and neutrophils in rats. Eur J Pharmacol 1998; 354: 73-81.

    Google Scholar 

  57. Arai Y, Nakamura Y, Inoue F, Yamamoto K, Saito K, Furusawa S. Glucocorticoid-induced apoptotic pathways in eosinophils: Comparison with glucocorticoid-sensitive leukemia cells. Int J Hematol 2000; 71: 340-349.

    Google Scholar 

  58. Letuve S, Druilhe A, Grandsaigne M, Aubier M, Pretolani M. Critical role of mitochondria, but not caspases, during glucocorticosteroid-induced human eosinophil apoptosis. Am J Respir Cell Mol Biol 2002; 26: 565-571.

    Google Scholar 

  59. Zangrilli J, Robertson N, Shetty A, et al. Effect of IL-5, glucocorticoid, and Fas ligation on Bcl-2 homologue expression and caspase activation in circulating human eosinophils. Clin Exp Immunol 2000; 120: 12-21.

    Google Scholar 

  60. Zhang X, Moilanen E, Kankaanranta H. Enhancement of human eosinophil apoptosis by fluticasone propionate, budesonide, and beclomethasone. Eur J Pharmacol 2000; 406: 325- 332.

    Google Scholar 

  61. Debierre-Grockiego F, Leduc I, Prin L, Gouilleux-Gruart V. Dexamethasone inhibits apoptosis of eosinophils isolated from hypereosinophilic patients. Immunobiology 2001; 204: 517- 523.

    Google Scholar 

  62. Nielson CP, Hadjokas NE. Beta-adrenoceptor agonists block corticosteroid inhibition in eosinophils. Am J Respir Crit Care Med 1998; 157: 184-191.

    Google Scholar 

  63. Her E, Frazer J, Austen KF, Owen WF Jr. Eosinophil hematopoietins antagonize the programmed cell death of eosinophils. Cytokine and glucocorticoid effects on eosinophils maintained by endothelial cell-conditioned medium. J Clin Invest 1991; 88: 1982-1987.

    Google Scholar 

  64. Lamas AM, Leon OG, Schleimer RP. Glucocorticoids inhibit eosinophil responses to granulocyte-macrophage colony-stimulating factor. J Immunol 1991; 147: 254- 259.

    Google Scholar 

  65. Wallen N, Kita H, Weiler D, Gleich GJ. Glucocorticoids inhibit cytokine-mediated eosinophil survival. J Immunol 1991; 147: 3490-3495.

    Google Scholar 

  66. He W, Zhao Y, Song F, Saitoh A, Shimada S. Factors influencing the expression of Fas and Fas ligand on newborn murine keratinocytes and fibroblasts. Chin Med J (Engl) 2000; 113: 833-835.

    Google Scholar 

  67. Muschen M, Warskulat U, Douillard P, Gilbert E, Haussinger D. Regulation of CD95 (APO-1/Fas) receptor and ligand expression by lipopolysaccharide and dexamethasone in parenchymal and nonparenchymal rat liver cells. Hepatol 1998; 27: 200-208.

    Google Scholar 

  68. Schmidt M, Lügering N, Lügering A, Pauels H-G, Shulze-Osthoff K, Domschke W, Kucharzik T. Role of CD95/CD95 ligand system in glucocorticoid-induced monocyte apoptosis. J Immunol 2001; 166: 1344-1351.

    Google Scholar 

  69. Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family membres and the mitochondria in apoptosis. Genes Dev 1999; 13: 1899-1911.

    Google Scholar 

  70. Loeffler M, Kroemer G. The mitochondrion in cell death control: Certainties and incognita. Exp Cell Res 2000; 256: 19-26.

    Google Scholar 

  71. Dewson G, Walsh GM, Wardlaw AJ. Expression of Bcl-2 and its homologues in human eosinophils: Modulation by interleukin-5. Am J Respir Cell Mol Biol 1999; 20: 720- 728.

    Google Scholar 

  72. Dibbert B, Daigle I, Braun D, Schranz C, Weber M, Blaser K, Zangemeister-Wittke U, Akbar AN, Simon HU. Role for BclxL in delayed eosinophil apoptosis mediated by granulocytemacrophage colony-stimulating factor and interleukin-5. Blood 1998; 92: 778-783.

    Google Scholar 

  73. Dewson G, Cohen GM, Wardlaw AJ. Interleukin-5 inhibits translocation of Bax to the mitochondria, cytochrome c release, and activation of caspases in human eosinophils. Blood 2001; 98: 2239-2247.

    Google Scholar 

  74. Gardai SJ, Hoontrakoon R, Goddard CD, et al. Oxidantmediated mitochondrial injury in eosinophil apoptosis: Enhancement by glucocorticoids and inhibition by granulocytemacrophage colony-stimulating factor. J Immunol 2003; 170: 556-566.

    Google Scholar 

  75. Pazdrak K, Olszewska-Pazdrak B, Stafford S, Garofalo RP, Alam R. Lyn, Jak2, and Raf-1 kinases are critical for the antiapoptotic effect of interleukin 5, whereas only Raf-1 kinase is essential for eosinophil activation and degranulation. J Exp Med 1998; 188: 421-429.

    Google Scholar 

  76. Yousefi S, Hoessli DC, Blaser K, Mills GB, Simon HU. Requirement of Lyn and Syk tyrosine kinases for the prevention of apoptosis by cytokines in human eosinophils. J Exp Med 1996; 183: 1407-1414.

    Google Scholar 

  77. Peachman KK, Lyles DS, Bass DA. Mitochondria in eosinophils: Functional role in apoptosis but not respiration. Proc Natl Acad Sci USA 2001; 98: 1717-1722.

    Google Scholar 

  78. Letuve S, Druilhe A, Grandsaigne M, Aubier M, Pretolani M. Involvement of caspases and of mitochondria in Fas ligationinduced eosinophil apoptosis: Modulation by interleukin-5 and interferon-gamma. J Leukoc Biol 2001; 70: 767-775.

    Google Scholar 

  79. Zhang JP, Wong CK, Lam CW. Role of caspases in dexamethasone-induced apoptosis and activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase in human eosinophils. Clin Exp Immunol 2000; 122: 20-27.

    Google Scholar 

  80. Waterhouse NJ, Finucane DM, Green DR, et al. Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ 1998; 5: 1051-1061.

    Google Scholar 

  81. Kankaanranta H, Giembycz MA, Barnes PJ, et al. Hydrogen peroxide reverses IL-5 afforded eosinophil survival and promotes constitutive human eosinophil apoptosis. Int Arch Allergy Immunol 2002; 127: 73-78.

    Google Scholar 

  82. Wedi B, Straede J, Wieland B, Kapp A. Eosinophil apoptosis is mediated by stimulators of cellular oxidative metabolisms and inhibited by antioxidants: Involvement of a thiolsensitive redox regulation in eosinophil cell death. Blood 1999; 94: 2365-2373.

    Google Scholar 

  83. De Souza PM, Kankaanranta H, Michael A, Barnes PJ, Giembycz MA, Lindsay MA. Caspase-catalyzed cleavage and activation of Mst1 correlates with eosinophil but not neutrophil apoptosis. Blood 2002; 99: 3432-3438.

    Google Scholar 

  84. Kankaanranta H, De Souza PM, Barnes PJ, Salmon M, Giembycz MA, Lindsay MA. SB 203580, an inhibitor of p38 mitogen-activated protein kinase, enhances constitutive apoptosis of cytokine-deprived human eosinophils. J Pharmacol Exp Ther 1999; 290: 621-628.

    Google Scholar 

  85. Tang G, Minemoto Y, Dibling B, et al. Inhibition of JNK activation through NF-kappaB target genes. Nature 2001; 414: 313-317.

    Google Scholar 

  86. Beauvais F, Michel L, Dubertret L. Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis. Role of K+ channels. J Leukoc Biol 1995; 57: 851-855.

    Google Scholar 

  87. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441-446.

    Google Scholar 

  88. Li LY, Luo X, Wang. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412: 95-99.

    Google Scholar 

  89. Van Loo G, Schotte P, van Gurp M, et al. Endonuclease G: A mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ 2001; 8: 1136-1142.

    Google Scholar 

  90. Buttgereit F, Scheffold A. Rapid glucocorticoid effects on immune cells. Steroids 2002; 67: 529-534.

    Google Scholar 

  91. Thompson EB. Mechanisms of T-cell apoptosis induced by glucocorticoids. Trends Endocrinol Metab 1999; 9: 353-358.

    Google Scholar 

  92. Iwata M, Iseki R Sato K, Tozawa Y, Ohoka Y. Involvement of protein kinase C-epsilon in glucocorticoid-induced apoptosis in thymocytes. Int Immunol 1994; 6: 431-438.

    Google Scholar 

  93. Cifone MG, Migliorati G, Parroni R, et al. Dexamethasoneinduced thymocyte-apoptosis: Apoptotic signal involves the sequential activation of phosphoinositide-specific phospholipase C, acidic sphingomyelinase and caspases. Blood 1999; 93: 2282-2296.

    Google Scholar 

  94. Petit PX, Lecoeur H, Zorn E, Sauguet C, Mignotte B, Gougeon M-L. Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 1995; 130: 157-167.

    Google Scholar 

  95. Alam R, Forsythe P, Stafford S, Fukuda Y. Transforming growth factor beta abrogates the effects of hematopoietins on eosinophils and induces their apoptosis. J Exp Med 1994; 179: 1041-1045.

    Google Scholar 

  96. Castedo M, Hirsch T, Susin SA, et al. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 1996; 157: 512-521.

    Google Scholar 

  97. Hirsch T, Dallaporta B, Zamzami N, et al. Proteasome activation occurs at an early, premitochondrial step of thymocyte apoptosis. J Immunol 1998; 161: 35-40.

    Google Scholar 

  98. Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996; 184: 1155-1160.

    Google Scholar 

  99. Marchetti MC, Di Marco B, Cifone G, Migliorati G, Riccardi C. Dexamethasone-induced apoptosis of thymocytes: Role of glucocorticoid receptor-associated Src kinase and caspase-8 activation. Blood 2003; 101: 585-593.

    Google Scholar 

  100. Marchetti MC, Di Marco B, Santini MC, Bartoli A, Delfino DV, Riccardi C. Dexamethasone-induced thymocyte apoptosis requires glucocorticoid receptor nuclear translocation but not mitochondrial membrane potential transition. Toxicol Lett 2003; 139: 175-180.

    Google Scholar 

  101. Tonomura N, McLaughlin K, Grimm L, Goldsby RA, Osborne BA. Glucocorticoid-induced apoptosis of thymocytes: Requirement of proteasome-dependent mitochondrial activity. J Immunol 2003; 170: 2469-2478.

    Google Scholar 

  102. Torres-Roca JF, Tung JW, Greenwald DR, et al. An early oxygen-dependent step is required for dexamethasoneinduced apoptosis of immature mouse thymocytes. J Immunol 2000; 165: 4822-4830.

    Google Scholar 

  103. Yoshino T, Kishi H, Nagata T, Tsukada K, Saito S, Muraguchi A. Differential involvement of p38 MAP kinase pathway and Bax translocation in the mitochondria-mediated cell death in TCR-and dexamethasone-stimulated thymocytes. Eur J Immunol 2001; 31: 2702-2708.

    Google Scholar 

  104. Hirsch T, Marchetti P, Susin SA, et al. The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 1997; 15: 1573-1581.

    Google Scholar 

  105. Zhivotovsky B, Gahm B, Ankarcrona M, Nicotera P, Orrenius S. Multiple proteases are involved in thymocyte apoptosis. Exp Cell Res 1995; 221: 404-412.

    Google Scholar 

  106. Bustamante J, Tovar BA, Montero G, Boveris A. Early redox changes during rat thymocyte apoptosis. Arch Biochem Biophys 1997; 337: 121-128.

    Google Scholar 

  107. Slater AF, Nobel CS, Maellaro E, Bustamante J, Kimland M, Orrenius S. Nitrone spin traps and a nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis. Biochem J 1995; 306: 771-778.

    Google Scholar 

  108. Wang JF, Jerrels TR, Spitzer JJ. Decreased production of reactive oxygen intermediates is an early event during apoptosis of rat thymocytes. Free Radic Biol Med 1996; 20: 533- 542.

    Google Scholar 

  109. Marchetti P, Decaudin D, Macho A, et al. Redox regulation of apoptosis: Impact of thiol oxidation status on mitochondrial function. Eur J Immunol 1997; 27: 289-296.

    Google Scholar 

  110. Sandau K, Brune B. The dual role of S-nitrosoglutathione (GSNO) during thymocyte apoptosis. Cell Signal 1996; 8: 173-177.

    Google Scholar 

  111. Fehsel K, Kroncke KD, Meyer KL, Huber H, Wahn V, Kolb-Bachofen V. Nitric oxide induces apoptosis in mouse thymocytes. J Immunol 1995; 155: 2858-2865.

    Google Scholar 

  112. Sabapathy K, Hu Y, Kallunki T, et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr Biol 1999; 9: 116-125.

    Google Scholar 

  113. Testolin L, Carson C, Wang Y, Walker PR, Armato U, Sikorska M. Jun and JNK kinase are activated in thymocytes in response to VM26 and radiation but not glucocorticoids. Exp Cell Res 1997; 230: 220-232.

    Google Scholar 

  114. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 2000; 288: 874-877.

    Google Scholar 

  115. Conte D, Liston P, Wong JW, Wright KE, Korneluk RG. Thymocyte-targeted overexpression of xiap transgene disrupts T lymphoid apoptosis and maturation. Proc Natl Acad Sci USA 2001; 98: 5049-5054.

    Google Scholar 

  116. Kirsch AH, Mahmood AA, Endres J, et al. Apoptosis of human T-cells: Induction by glucocorticoids or surface receptor ligation in vitro and ex vivo. J Biol Regul Homeost Agents 1999; 13: 80-89.

    Google Scholar 

  117. Lepine S, Lakatos B, Maziere P, Courageot MP, Sulpice JC, Giraud F. Involvement of sphingosine in dexamethasoneinduced thymocyte apoptosis. Ann NY Acad Sci 2002; 973: 190-193.

    Google Scholar 

  118. Dallaporta B, Marchetti P, de Pablo MA, et al. Plasma membrane potential in thymocyte apoptosis. J Immunol 1999; 162: 6534-6542.

    Google Scholar 

  119. Dallaporta B, Pablo M, Maisse C, et al. Proteasome activation as a critical event of thymocyte apoptosis. Cell Death Differ 2000; 7: 368-373.

    Google Scholar 

  120. Stefanelli C, Bonavita F, Stanic I, et al. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis. Biochem J 1997; 322: 909-917.

    Google Scholar 

  121. Koshiba M, Apasov S, Sverdlov V, et al. Transient upregulation of P2Y2 nucleotide receptor mRNA expression is an immediate early gene response in activated thymocytes. Proc Natl Acad Sci USA 1997; 94: 831-836.

    Google Scholar 

  122. Chvatchko Y, Valera S, Aubry JP, Renno T, Buell G, Bonnefoy JY. The involvement of an ATP-gated ion Channel, P2X1, in thymocyte apoptosis. Immunity 1996; 5: 275-283.

    Google Scholar 

  123. Neamati N, Fernandez A, Wright S, Kiefer J, McConkey DJ. Degradation of lamin B1 precedes oligonucleosomal DNA fragmentation in apoptotic thymocytes and isolated thymocyte nuclei. J Immunol 1995; 154: 3788-3795.

    Google Scholar 

  124. McConkey DJ, Hartzell P, Jondal M, Orrenius S. Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C. J Biol Chem 1989; 264: 13399-13402.

    Google Scholar 

  125. Zhivotovsky B, Cedervall B, Jiang S, Nicotera P, Orrenius S. Involvement of Ca2+ in the formation of high molecular weight DNA fragments in thymocyte apoptosis. Biochem Biophys Res Comm 1994; 202: 120-127.

    Google Scholar 

  126. Asada A, Zhao Y, Kondo S, Iwata M. Induction of thymocyte apoptosis by Ca2+-independent protein kinase C (nPKC) activation and its regulation by calcineurin activation. J Biol Chem 1998; 273: 28392-28398.

    Google Scholar 

  127. Ojeda F, Guarda MI, Maldonado C, Folch H. Protein kinase-C involvement in thymocyte apoptosis induced by hydrocortisone. Cell Immunol 1990; 125: 535-539.

    Google Scholar 

  128. Garcia-Welsh A, Laskin DL, Shuler RL, Laskin JD. Cellular depletion of p56lck during thymocyte apoptosis. J Leukoc Biol 1994; 56: 528-532.

    Google Scholar 

  129. Wang W, Wykrzykowska J, Johnson T, Sen R, Sen J. A NFkB/ c-myc-dependent survival pathway is targeted by corticosteroids in immature thymocytes. J Immunol 1999; 162: 314-322.

    Google Scholar 

  130. Winiewska M, Stanczyk M, Grzelakowska-Sztabert B, Kaminska B. Nuclear factor of activated T cell (NFAT) is a possible target for dexamethasone in thymocyte apoptosis. Cell Biol Int 1997; 21: 127-132.

    Google Scholar 

  131. Sikora E, Grassilli E, Radziszewska E, Bellesia E, Barbieri D, Franceschi C. Transcription factors DNA-binding activity in rat thymocytes undergoing apoptosis after heat-shock or dexamethasone treatment. Biochem Biophys Res Comm 1993; 197: 709-715.

    Google Scholar 

  132. Mok CL, Gil-Gomez G, Williams O, et al. Bad can act as a key regulator of T cell apoptosis and T cell development. J Exp Med 1999; 189: 575-586.

    Google Scholar 

  133. Vugmeyster Y, Borodovsky A, Maurice MM, Maehr R, Furman MH, Ploegh HL. The ubiquitin-proteasome pathway in thymocyte apoptosis: Caspase-dependent processing of the deubiquitinating enzyme USP7 (HAUSP). Mol Immunol 2002; 39: 431-441.

    Google Scholar 

  134. Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function. Annu Rev Immunol 2000; 18: 309-345.

    Google Scholar 

  135. Mann CL, Bortner CD, Jewell CM, Cidlowski JA. Glucocorticoid-induced plasma membrane depolarization during thymocyte apoptosis: Association with cell shrinkage and degradation of the Na+/K+-adenosine triphosphate. Endocrinol 2001; 142: 5059-5068.

    Google Scholar 

  136. Squier MKT, Cohen JJ. Calpain and cell death. Cell Death Differ 1996; 3: 275-283.

    Google Scholar 

  137. Grassilli E, Benatti F, Dansi P, et al. Inhibition of proteasome function privent thymocyte apoptosis: Involvement of ornithine decarboxylase. Biochem Biophys Res Comm 1998; 250: 293-297.

    Google Scholar 

  138. Grimm LM, Goldberg AL, Poirier GG, Schwartz LM, Osborne BA. Proteasomes play an essentiel role in thymocyte apoptosis. EMBO J 1996; 15: 3835-3844.

    Google Scholar 

  139. Fearnhead HO, Rivett AJ, Dinsdale D, Cohen GM. A preexisting protease is a common effector of thymocyte apoptosis mediated by diverse stimuli. FEBS Lett 1995; 357: 242-246.

    Google Scholar 

  140. Schwartzman RA, Cidlowski JA. Mechanism of tissue-specific induction of internucleosomal deoxyribonucleic acid cleavage activity and apoptosis by glucocorticoids. Endocrinol 1993; 133: 591-599.

    Google Scholar 

  141. Shiokawa D, Ohyama H, Yamada T, Takahashi K, Tanuma S. Identification of an endonuclease responsible for apoptosis in rat thymocytes. Eur J Biochem 1994; 226: 23-30.

    Google Scholar 

  142. Willye AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284: 555-556.

    Google Scholar 

  143. Zhang J, Wang X, Bove KE, Xu M. DNA fragmentation factor 45-deficient cells are more resistant to apoptosis and exhibit different dying morphology than wild-type control cells. J Biol Chem 1999; 274: 37450-37454.

    Google Scholar 

  144. Mann CL, Cidlowski JA. Glucocorticoids regulate plasma membrane potential during rat thymocyte apoptosis in vivo and in vitro. Endocrinol 2001; 142: 421-429.

    Google Scholar 

  145. Ramdas J, Liu W, Harmon JM. Glucocorticoid-induced cell death requires autoinduction of glucocorticoid receptor expression in human leukemic T cells. Cancer Res 1999; 59: 1378-1385.

    Google Scholar 

  146. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation: Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 1989; 83: 865-875.

    Google Scholar 

  147. Stern M, Meagher L, Savill J, Haslett C. Apoptosis in human eosinophils. Programmed cell death in the eosinophil leads to phagocytosis by macrophages and is modulated by IL-5. J Immunol 1992; 148: 3543-3549.

    Google Scholar 

  148. Sexton DW, Blaylock MG, Walsh GM. Human alveolar epithelial cells engulf apoptotic eosinophils by means of integrin-and phosphatidylserine receptor-dependent mechanisms: A process upregulated by dexamethasone. J Allergy Clin Immunol 2001; 108: 962-969.

    Google Scholar 

  149. Liu Y, Cousin JM, Hughes J, et al. Glucocorticoids promote non-phlogistic phagocytosis of apoptotic leukocytes. J Immunol 1999; 162: 3639-3646.

    Google Scholar 

  150. Giles KM, Ross K, Rossi AG, Hotchin NA, Haslett C, Dransfield I. Glucocorticoid augmentation of macrophage capacity for phagocytosis of apoptotic cells is associated with reduced p130Cas expression, loss of paxillin/pyk2 phosphorylation, and high levels of active Rac. J Immunol 2001; 167: 976-986.

    Google Scholar 

  151. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000; 407: 784-788.

    Google Scholar 

  152. Franc NC. Phagocytosis of apoptotic cells in mammals, Caenorhabditis elegans and Drosophila melanogaster: Molecular mechanisms and physiological consequences. Front Biosci 2002; 7: 1298-1313.

    Google Scholar 

  153. Stern M, Savill J, Haslett C. Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/ thrombospondin recognition mechanism and lack of phlogistic response. Am J Pathol 1996; 149: 911-921.

    Google Scholar 

  154. Walsh GM, Sexton DW, Blaylock MG, Convery CM. Resting and cytokine-stimulated human small airway epithelial cells recognize and engulf apoptotic eosinophils. Blood 1999; 94: 2827-2835.

    Google Scholar 

  155. Chung KF, Godard P. ERS task force: Difficult therapyresistant asthma. Eur Respir J 1999; 13: 1198-1208.

    Google Scholar 

  156. Wenzel SE, Schwatz LB, Langmarck EL, et al. Evidence that severe asthma can be divided pathologically into two in-flammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999; 160: 1001- 1008.

    Google Scholar 

  157. Louis R, Lau LCK, Bron AO, Roldaan AC, Radermecker M, Djukanovic R. The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med 2000; 161: 9-16.

    Google Scholar 

  158. Hamid QA, Wenzel SE, Hauk PJ, et al. Increased glucocorticoid receptor in airway cells of glucocorticoid-insensitive asthma. Am J Respir Crit Care Med 1999; 159: 1600- 1604.

    Google Scholar 

  159. Sousa AR, Lane6SJ, Cidlowski JA, Staynov DZ, Lee TH. Glucocorticoid resistance in asthma is associated with elevated in vivo expression of the glucocorticoid receptor ?-isoform. J Allergy Clin Immunol 2000; 105: 943-950.

    Google Scholar 

  160. Hamilos DL, Leung DY, Muro S, et al. GR expression in nasal polyp inflammatory cells and its relationship to the antiinflammatory effects of intranasal fluticasone. J Allergy Clin Immunol 2001; 108: 59-68.

    Google Scholar 

  161. Strickland I, Kisich K, Hauk PJ, et al. High constitutive glucocorticoid receptor in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 2001; 193: 585-594.

    Google Scholar 

  162. Cox G. Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J Immunol 1995; 154: 4719-4725.

    Google Scholar 

  163. Hauk PJ, Goleva E, Strickland I, et al. Increased glucocorticoid receptor beta expression converts mouse hybridoma cells to a corticosteroid-insensitive phenotype. Am J Respir Cell Mol Biol 2002; 27: 361-367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druilhe, A., Létuvé, S. & Pretolani, M. Glucocorticoid-induced apoptosis in human eosinophils: Mechanisms of action. Apoptosis 8, 481–495 (2003). https://doi.org/10.1023/A:1025590308147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025590308147

Navigation