Skip to main content
Log in

Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The giant muscle protein titin has become a focus of research interests in the field of muscle mechanics due to its importance for passive muscle stiffness. Here we summarize research activities leading to current understanding of titin's mechanical role in the sarcomere. We then show how low-porosity polyacrylamide-gel electrophoresis, optimised for resolving megadalton proteins, can identify differences in titin-isoform expression in the hearts of 10 different vertebrate species and in several skeletal muscles of the rabbit. A large variety of titin-expression patterns is apparent, which is analysed in terms of its effect on the passive tension of isolated myofibrils obtained from selected muscle types. We show and discuss evidence indicating that vertebrate striated muscle cells are capable of adjusting their passive stiffness in the following ways: (1) Cardiomyocytes co-express long (N2BA) and short (N2B) titin isoform in the same half-sarcomeres and vary the N2BA:N2B ratio to adjust stiffness. Hearts from different mammalian species vary widely in their N2BA:N2B ratio; right ventricles show higher ratios than left ventricles. There is also a significant gradient of N2BA:N2B ratio in a given heart, from basal to apical; transmural ratio differences are less distinct. (2) Skeletal muscles can express longer or shorter I-band-titin (N2A-isoform) to achieve lower or higher titin-derived stiffness, respectively. (3) Some skeletal muscles co-express longer (N2AL) and shorter (N2AS) titin isoforms, also at the single-fibre level (e.g., rabbit psoas); variations in overall N2AL:N2AS ratio may add to the fine-tuning of titin-based stiffness in the whole muscle. Whereas it is established that titin, together with extracellular collagen, determines the passive tension at physiological sarcomere lengths in cardiac muscle, it remains to be seen to which degree titin and/or extracellular structures are important for the physiological passive-tension generation of whole skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J, Joumaa V, Stevens L, Neagoe C, Li Z, Mounier Y, Linke WA and Goubel F (2002)Passive stiffness changes in soleus muscles from desmin knockout mice are not due to titin modi cations. Pffu ¨gers Arch 444:771–776.

    Article  CAS  Google Scholar 

  • Bang ML, Centner T, FornoffF, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H and Labeit S (2001)The complete gene sequence of titin,expression of an unusual approximately 700-kDa titin isoform,and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072.

    PubMed  CAS  Google Scholar 

  • Bartoo ML, Linke WA and Pollack GH (1997)Basis of passive tension and stiffness in isolated rabbit myo brils. Am J Physiol 273:C266-C276.

    PubMed  CAS  Google Scholar 

  • Bell SP, Nyland L, Tischler MD, McNabb M, Granzier H and LeWinter MM (2000)Alterations in the determinants of diastolic suction during pacing tachycardia. Circ Res 87:235–240.

    PubMed  CAS  Google Scholar 

  • Brodie TG (1895)The extensibility of muscle. J Anat Physiol 29:367–388.

    PubMed  CAS  Google Scholar 

  • Carlsen F, Knappeis GG and Buchthal F (1961)Ultrastructure of the resting and contracted striated muscle ber at different degrees of stretch. J Biophys Biochem Cytol 11:95–117.

    Article  PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J and Fernandez JM (1999)Mechanical and chemical unfolding of a single protein:a comparison. Proc Natl Acad Sci USA 96:3694–3699.

    Article  PubMed  CAS  Google Scholar 

  • Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitas K, Labeit S and Granzier H (2000)Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86:59–67.

    PubMed  CAS  Google Scholar 

  • Cazorla O, Wu Y, Irving TC and Granzier H (2001)Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88:1028–1035.

    PubMed  CAS  Google Scholar 

  • Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H and Labeit S (2001)Identification of muscle specic ring nger proteins as potential regulators of the titin kinase domain. JMol Biol 306:717–726.

    Article  CAS  Google Scholar 

  • Clark KA, McElhinny AS, Beckerle MC and Gregorio CC (2002) Striated muscle cytoarchitecture:an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706.

    Article  PubMed  CAS  Google Scholar 

  • Flory PJ (1969)Statistical Mechanics of Chain Molecules. Interstate Publishers, New York.

    Google Scholar 

  • Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M and Clarke J (2002)Mechanical unfolding of a titin Ig domain:structure of unfolding intermediate revealed by combining AFM,molecular dynamics simulations,NMR and protein engineering. J Mol Biol 322:841–849.

    Article  PubMed  CAS  Google Scholar 

  • Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H and Labeit S (2000)Series of exon-skipping events in the elastic spring region of titin as the structural basis for myo brillar elastic diversity. Circ Res 86:1114–1121.

    PubMed  CAS  Google Scholar 

  • Fry AC, Staron RS, James CB, Hikida RS and Hagerman FC (1997) Differential titin isoform expression in human skeletal muscle. Acta Physiol Scand 161:473–479.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda N, Sasaki D, Ishiwata S and Kurihara S (2001)Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank-Starling mechanism of the heart. Circulation 104:1639–1645.

    PubMed  CAS  Google Scholar 

  • Funatsu T, Higuchi H and Ishiwata S (1990)Elastic laments in skeletal muscle revealed by selective removal of thin laments with plasma gelsolin. J Cell Biol 110:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Fung YC (1993)Biomechanics:Mechanical Properties of Living Tissues. Springer-Verlag, New York.

    Google Scholar 

  • Furst DO, Osborn M, Nave R and Weber K (1988)The organization of titin laments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy:a map of ten nonre-petitive epitopes starting at the Z line extends close to the Mline. J Cell Biol 106:1563–1572.

    Article  PubMed  CAS  Google Scholar 

  • Gajdosik RL (2001)Passive extensibility of skeletal muscle:review of the literature with clinical implications. Clin Biomech(Bristol, Avon )16:87–101.

    Article  CAS  Google Scholar 

  • Gao M, Wilmanns M and Schulten K (2002)Steered molecular dynamics studies of titin I1 domain unfolding. Biophys J 83:3435–3445.

    PubMed  CAS  Google Scholar 

  • Garamvolgyi N (1966)Elongation of the primary myo laments in highly stretched insectffight muscle brils. Biochem Biophys Acta 1:89–100.

    CAS  Google Scholar 

  • Gautel M and Goulding D (1996)A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 385:11–14.

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Okuyama R, Honda M, Uchida H, Akema T, Ohira Y and Yoshioka T (2003)Pro les of connectin (titin)in atrophied soleus muscle induced by unloading of rats. J Appl Physiol 94:897–902.

    PubMed  CAS  Google Scholar 

  • Granzier HL and Irving TC (1995)Passive tension in cardiac muscle: contribution of collagen,titin,microtubules,and intermediate laments. Biophys J 68:1027–1044.

    PubMed  CAS  Google Scholar 

  • Granzier H, Kellermayer M, Helmes M and Trombitas K (1997)Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-lament extraction. Biophys J 73: 2043–2053.

    PubMed  CAS  Google Scholar 

  • Granzier H and Labeit S (2002)Cardiac titin:an adjustable multi-functional spring. J Physiol 541:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Granzier HL and Wang K (1993)Passive tension and stiffness of vertebrate skeletal and insectffight muscles:the contribution of weak cross-bridges and elastic laments. Biophys J 65:2141–2159.

    PubMed  CAS  Google Scholar 

  • Haycraft JB (1904)The elasticity of animal tissue. J Physiol 31:392–409.

    PubMed  CAS  Google Scholar 

  • Helmes M, Trombitas K, Centner T, Kellermayer M, Labeit S, Linke WA and Granzier H (1999)Mechanically driven contour-length adjustment in rat cardiac titin 's unique N2B sequence:titin is an adjustable spring. Circ Res 84:1339–1352.

    PubMed  CAS  Google Scholar 

  • Hill AV (1938)The heat of shortening and the dynamic constants of muscle. Proc Roy Soc Lond B 126:136–195.

    Article  Google Scholar 

  • Hill AV (1952)The thermodynamics of elasticity in resting striated muscle. Proc Roy Soc Lond B 139:464–497.

    CAS  Google Scholar 

  • Hill DK (1968)Tension due to interaction between the sliding laments in resting striated muscle. The effect of stimulation. J Physiol 199:637–684.

    CAS  Google Scholar 

  • Horowits R (1992)Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 61:392–398.

    PubMed  CAS  Google Scholar 

  • Horowits R, Kempner ES, Bisher ME and Podolsky RJ (1986)A physiological role for titin and nebulin in skeletal muscle. Nature 323:160–164.

    Article  PubMed  CAS  Google Scholar 

  • Horowits R, Maruyama K and Podolsky RJ (1989)Elastic behavior of connectin laments during thick lament movement in activated skeletal muscle. J Cell Biol 109:2169–2176.

    Article  PubMed  CAS  Google Scholar 

  • Horowits R and Podolsky RJ (1988)Thick lament movement and isometric tension in activated skeletal muscle. Biophys J 54:165–171.

    PubMed  CAS  Google Scholar 

  • Huxley HE and Hanson J (1954)Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:149–152.

    Google Scholar 

  • Huxley AF and Peachey LD (1961)The maximum length for contraction in vertebrate striated muscle. J Physiol 156:150–165.

    PubMed  CAS  Google Scholar 

  • Improta S, Politou A and Pastore A (1996)Immunoglobulin-like modules from I-band titin:extensible components of muscle elasticity. Structure 4:323–337.

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, Shimizu T, Shibata M and Maruyama K (1988)Extensible and less-extensible domains of connectin laments in stretched verte-brate skeletal muscle sarcomeres as detected by immunoffuores-cence and immunoelectron microscopy using monoclonal antibodies. J Biochem 104:504–508.

    PubMed  CAS  Google Scholar 

  • Kasper CE and Xun L (2000)Expression of titin in skeletal muscle varies with hind-limb unloading. Biol Res Nurs 2:107–115.

    PubMed  CAS  Google Scholar 

  • Kawamura Y, Kume H, Itoh Y, Ohtsuka S, Kimura S and Maruyama K (1995)Localization of three fragments of connectin in chicken breast muscle sarcomeres. J Biochem(Tokyo )117:201–207.

    PubMed  CAS  Google Scholar 

  • Kellermayer MS, Smith SB, Bustamante C and Granzier HL (2001) Mechanical fatigue in repetitively stretched single molecules of titin. Biophys J 80:852–863.

    PubMed  CAS  Google Scholar 

  • Kellermayer MS, Smith SB, Granzier HL and Bustamante C (1997) Folding-unfolding transitions in single titin molecules characteri-zed with laser tweezers. Science 276:1112–1116.

    Article  PubMed  CAS  Google Scholar 

  • Knupp C, Luther PK and Squire JM (2002)Titin organisation and the 3D architecture of the vertebrate-striated muscle I-band. JMol Biol 322:731–739.

    Article  CAS  Google Scholar 

  • Kontrogianni-Konstantopoulos A and Bloch RJ (2003)The hydro-philic domain of small ankyrin 1 interacts with the two NH2-terminal immunoglobulin domains of titin. J Biol Chem 278:3985–3991.

    Article  PubMed  CAS  Google Scholar 

  • Kulke M, Fujita-Becker S,R ostkova E, Neagoe C, Labeit D, Manstein DJ, Gautel M and Linke WA (2001a)Interaction between PEVK-titin and actin laments:origin of a viscous force component in cardiac myo brils. Circ Res 89:874–881.

    PubMed  CAS  Google Scholar 

  • Kulke M, Neagoe C, Kolmerer B, Minajeva A, Hinssen H, Bullard B and Linke WA (2001b)Kettin,a major source of myo brillar stiffness in Drosophila indirect flight muscle. J Cell Biol 154:1045–1057.

    Article  PubMed  CAS  Google Scholar 

  • Kurzban GP and Wang K (1988)Giant polypeptides of skeletal muscle titin:sedimentation equilibrium in guanidine hydrochlo-ride. Biochem Biophys Res Commun 150:1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Barlow D, Gautel M, Gibson T, Holt J, Hsieh C-L, Francke U, Leonard K, Wardale J, Whiting A and Trinick J (1990)A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 345:273–276.

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Gautel M, Lakey A and Trinick J (1992)Towards a molecular understanding of titin. EMBO J 11:1711–1716.

    PubMed  CAS  Google Scholar 

  • Labeit S and Kolmerer B (1995)Titins,giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296.

    PubMed  CAS  Google Scholar 

  • Labeit S, Kolmerer B and Linke WA (1997)The giant protein titin. emerging roles in physiology and pathophysiology. Circ Res 80: 290–294.

    PubMed  CAS  Google Scholar 

  • Lange S, Auerbach D, McLoughlin P, Perriard E, Schafer BW, Perriard JC and Ehler E (2002)Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci 115:4925–4936.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, Marszalek PE and Fernandez JM (2002)Reverse engineer-ing of the giant muscle protein titin. Nature 418:998–1002.

    Article  PubMed  CAS  Google Scholar 

  • Lindstedt SL, Reich TE, Keim P and LaStayo PC (2002)Do muscles function as adaptable locomotor springs? J Exp Biol 205:2211–2216.

    PubMed  Google Scholar 

  • Linke WA (2000)Stretching molecular springs:elasticity of titin laments in vertebrate striated muscle. Histol Histopathol 15:799–811.

    PubMed  CAS  Google Scholar 

  • Linke WA and Fernandez JM (2002)Cardiac titin:molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium. J Muscle Res Cell Motil 23(5–6): 483–497.

    Article  PubMed  Google Scholar 

  • Linke WA and Granzier H (1998)A spring tale:new facts on titin elasticity. Biophys J 75:2613–2614.

    PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC and Gautel M (1997)Actin-titin interaction in cardiac myo brils:probing a physiological role. Biophys J 73:905–919.

    PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Mundel P, Stockmeier MR and Kolmerer B (1998a)Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci USA 95:8052–8057.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC and Labeit S (1996)Towards a molecular understanding of the elasticity of titin. J Mol Biol 261:62–71.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Kulke M, Li H, Fujita-Becker S, Neagoe C, Manstein DJ, Gautel M and Fernandez JM (2002)PEVK domain of titin:an entropic spring with actin-binding properties. J Struct Biol 137: 194–205.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Popov VI and Pollack GH (1994)Passive and active tension in single cardiac myo brils. Biophys J 67:782–792.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S and Gregorio CC (1999)I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin lament structure. J Cell Biol 146:631–644.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Stockmeier MR, Ivemeyer M, Hosser H and Mundel P (1998b)Characterizing titin 's I-band Ig domain region as an entropic spring. J Cell Sci 111:1567–1574.

    PubMed  CAS  Google Scholar 

  • Liversage AD, Holmes D, Knight PJ, Tskhovrebova L and Trinick J (2001)Titin and the sarcomere symmetry paradox. J Mol Biol 305: 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Isralewitz B, Krammer A, Vogel V and Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75:662–671.

    PubMed  CAS  Google Scholar 

  • Lu H and Schulten K (2000)The key event in force-induced unfolding of titin 's immunoglobulin domains. Biophys J 79:51–65.

    PubMed  CAS  Google Scholar 

  • Ma K and Wang K (2002)Interaction of nebulin SH3 domain with titin PEVK and myopalladin:implications for the signaling and assembly role of titin and nebulin. FEBS Lett 532:273–278.

    Article  PubMed  CAS  Google Scholar 

  • Magid A and Law DJ (1985)Myo brils bear most of the resting tension in frog skeletal muscle. Science 230:1280–1282.

    PubMed  CAS  Google Scholar 

  • Marko JF and Siggia ED (1995)Stretching DNA. Macromolecules 28: 8759–8770.

    Article  CAS  Google Scholar 

  • Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K and Fernandez JM (1999)Mechanical unfolding intermediates in titin modules. Nature 402:100–103.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Kimura S, Yoshidomi H, Sawada H and Kikuchi M (1984)Molecular size and shape of b connectin,an elastic protein of striated muscle. J Biochem(Tokyo )95:1423–1493.

    PubMed  CAS  Google Scholar 

  • Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S, Ohashi K, Murakami F, Handa S and Eguchi G (1977a) Connectin,an elastic protein of muscle:characterization and function. J Biochem(Tokyo )82:317–337.

    PubMed  CAS  Google Scholar 

  • Maruyama K, Murakami F and Ohashi K (1977b)Connectin,an elastic protein of muscle.Comparative Biochemistry. J Biochem(Tokyo )82:339–345.

    PubMed  CAS  Google Scholar 

  • Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Furst DO, Wilmanns M and Gautel M (1998)Structural basis for activation of the titin kinase domain during myo brillogenesis. Nature 395: 863–869.

    Article  PubMed  CAS  Google Scholar 

  • Mayans O, Wuerges J, Canela S, Gautel M and Wilmanns M (2001) Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin. Structure 9:331–340.

    Article  PubMed  CAS  Google Scholar 

  • McElhinny AS, Kakinuma K, Sorimachi H, Labeit S and Gregorio CC (2002)Muscle-specic RING nger-1 interacts with titin to regulate sarcomeric M-line and thick lament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J Cell Biol 157:125–136.

    Article  PubMed  CAS  Google Scholar 

  • Minajeva A, Kulke M, Fernandez JM and Linke WA (2001) Unfolding of titin domains explains the viscoelastic behavior of skeletal myo brils. Biophys J 80:1442–1451.

    PubMed  CAS  Google Scholar 

  • Minajeva A, Neagoe C, Kulke M and Linke WA (2002)Titin-based contribution to shortening velocity of rabbit skeletal myo brils. J Physiol 540:177–188.

    Article  PubMed  CAS  Google Scholar 

  • Muhle-Goll C, Habeck M, Cazorla O, Nilges M, Labeit S and Granzier H (2001)Structural and functional studies of titin 's fn3 modules reveal conserved surface patterns and binding to myosin S1-a possible role in the Frank-Starling mechanism of the heart. J Mol Biol 313:431–447.

    Article  PubMed  CAS  Google Scholar 

  • Mutungi G and Ranatunga KW (1996)The viscous,viscoelastic and elastic characteristics of resting fast and slow mammalian (rat) muscle bres. J Physiol 496:827–836.

    PubMed  CAS  Google Scholar 

  • Nave R, Furst DO and Weber K (1989)Visualization of the polarity of isolated titin molecules:a single globular head on a long thin rod as the M Band anchoring domain? J Cell Biol 109:2177–2187.

    Article  PubMed  CAS  Google Scholar 

  • Neagoe C, Kulke M, del Monte F, Gwathmey JK, de Tombe PP, Hajjar R and Linke WA (2002)Titin isoform switch in ischemic human heart disease. Circulation 106:1333–1341.

    Article  PubMed  Google Scholar 

  • NeuhoffV, Stamm R, Pardowitz I, Arold N, Ehrhardt W and Taube D (1990)Essential problems in quanti cation of proteins following colloidal staining with coomassie brilliant blue dyes in polyacryl-amide gels,and their solution. Electrophoresis 11:101–117.

    Article  PubMed  Google Scholar 

  • Oberhauser AF, Hansma PK, Carrion-Vazquez M and Fernandez JM (2001)Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci USA 98:468–472.

    Article  PubMed  CAS  Google Scholar 

  • Pfuhl M and Pastore A (1995)Tertiary structure of an immunoglobu-lin-like domain from the giant muscle protein titin:a new member of the I set. Structure 3:391–401.

    Article  PubMed  CAS  Google Scholar 

  • Pizon V, Iakovenko A, van der Ven PF, Kelly R, Fatu C, Furst DO, Karsenti E and Gautel M (2002)Transient association of titin and myosin with microtubules in nascent myo brils directed by the MURF2 RING-nger protein. J Cell Sci 115:4469–4482.

    Article  PubMed  CAS  Google Scholar 

  • Politou AS, Thomas DJ and Pastore A (1995)The folding and stability of titin immunoglobulin-like modules,with implica-tions for the mechanism of elasticity. Biophys J 69:2601–2610.

    PubMed  CAS  Google Scholar 

  • Reich TE, Lindstedt SL, LaStayo PC and Pierotti DJ (2000)Is the spring quality of muscle plastic? Am J Physiol Regul Integr Comp Physiol 278:R1661–1666.

    PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM and Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112.

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Schemmel A and Gaub HE (1998)The mechanical stability of immunoglobulin and bronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys J 75:3008–3014.

    PubMed  CAS  Google Scholar 

  • Roy CS (1881)The elastic properties of the arterial wall. J Physiol 3: 125–159.

    PubMed  CAS  Google Scholar 

  • Sjostrand F (1962)The connections between A-and I-band laments in striated frog muscle. J Ultrastruct Res 7:225–246.

    Article  PubMed  CAS  Google Scholar 

  • Smith SB, Cui Y and Bustamante C (1996)Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799.

    PubMed  CAS  Google Scholar 

  • Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K, et al.(1995)Muscle-speci c calpain,p94,responsible for limb girdle muscular dystrophy type 2A,associates with connectin through IS2,a p94-specific sequence. J Biol Chem 270:31158–31162.

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R and Hattori A (1995)Detection of giant myo brillar proteins connectin and nebulin by electrophoresis in 2%poly-acrylamide slab gels strengthened with agarose. Anal Biochem 224: 28–31.

    Article  PubMed  CAS  Google Scholar 

  • Toursel T, Stevens L, Granzier H and Mounier Y (2002)Passive tension of rat skeletal soleus muscle bers:effects of unloading conditions. J Appl Physiol 92:1465–1472.

    PubMed  Google Scholar 

  • Trinick J, Knight P and Whiting A (1984)Purification and properties of native titin. J Mol Biol 180:331–356.

    Article  PubMed  CAS  Google Scholar 

  • Trinick J and Tskhovrebova L (1999)Titin:a molecular control freak. Trends Cell Biol 9:377–380.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Freiburg A, Centner T, Labeit S and Granzier H (1999) Molecular dissection of N2B cardiac titin 's extensibility. Biophys J 77:3189–3196.

    PubMed  CAS  Google Scholar 

  • Trombitas K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M and Granzier H (1998)Titin extensibility in situ:entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 140:853–859.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Greaser ML and Pollack GH (1997)Interaction between titin and thin laments in intact cardiac muscle. J Muscle Res Cell Motil 18:345–351.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Pollack GH,W right J and Wang K (1993)Elastic properties of titin laments demonstrated using a 'freeze-break ' technique. Cell Motil Cytoskeleton 24:274–283.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K and Tigyi-Sebes A (1974)Direct evidence for connecting C laments in flight muscle of honey bee. Acta Biochim Biophys Acad Sci Hung 9:243–253.

    PubMed  CAS  Google Scholar 

  • Trombitas K, Wu Y, Labeit D, Labeit S and Granzier H (2001) Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am J Physiol Heart Circ Physiol 281: H1793-H1799.

    PubMed  CAS  Google Scholar 

  • Tskhovrebova L and Trinick J (1997)Direct visualization of exten-sibility in isolated titin molecules. J Mol Biol 265:100–106.

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L and Trinick J (2001)Flexibility and extensibility in the titin molecule:analysis of electron microscope data. J Mol Biol 310:755–771.

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L and Trinick J (2002)Role of titin in vertebrate striated muscle. Philos Trans R Soc Lond B Biol Sci 357:199–206.

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep JA and Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312.

    Article  PubMed  CAS  Google Scholar 

  • Vemuri R, Lankford EB, Poetter K, Hassanzadeh S, Takeda K, Yu ZX, Ferrans VJ and Epstein ND (1999)The stretch-activation response may be critical to the proper functioning of the mammalian heart. Proc Natl Acad Sci USA 96:1048–1053.

    Article  PubMed  CAS  Google Scholar 

  • Wang K, McCarter R, Wright J, Beverly J and Ramirez-Mitchell R (1991)Regulation of skeletal muscle stiffness and elasticity by titin isoforms:a test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 88:7101–7105.

    Article  PubMed  CAS  Google Scholar 

  • Wang K, McCarter R, Wright R, Beverly J and Ramirez-Mitchell R (1993)Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite lament is a dual-stage molecular spring. Biophys J 64:1161–1177.

    CAS  Google Scholar 

  • Wang K, McClure J and Tu A (1979)Titin:major myo brillar component of striated muscle. Proc Natl Acad Sci USA 76:3698–3702.

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Ramirez-Mitchell R and Palter D (1984)Titin is an extraordinary long,.exible,and slender myo brillar protein. Proc Natl Acad Sci USA 81:3685–3689.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Nair P, Labeit D, Kellermayer MS, Greaser M, Labeit S and Granzier H (2002)Molecular mechanics of cardiac titin 's PEVK and N2B spring elements. J Biol Chem 277:11549–11558.

    Article  PubMed  CAS  Google Scholar 

  • White DCS and Thorson J (1973)The kinetics of muscle contraction. Prog Biophys Mol Biol 27:173–255.

    Article  Google Scholar 

  • Whiting A, Wardale J and Trinick J (1989)Does titin regulate the length of muscle thick laments? J Mol Biol 205:263–268.

    Article  PubMed  CAS  Google Scholar 

  • Williams PE, Catanese T, Lucey EG and Goldspink G (1988)The importance of stretch and contractile activity in the prevention of connective tissue accumulation in muscle. J Anat 158:109–114.

    PubMed  CAS  Google Scholar 

  • Wu Y, Bell SP, Trombitas K,W itt CC, Labeit S, LeWinter MM and Granzier H (2002)Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation 106:1384–1389.

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Cazorla O, Labeit D, Labeit S and Granzier H (2000)Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 32:2151–2162.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neagoe, C., Opitz, C.A., Makarenko, I. et al. Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. J Muscle Res Cell Motil 24, 175–189 (2003). https://doi.org/10.1023/A:1026053530766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026053530766

Keywords

Navigation