Skip to main content
Log in

New Insights into Syndecan-2 Expression and Tumourigenic Activity in Colon Carcinoma Cells

  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Adhesion receptors play crucial roles in the neoplastic transformation of normal cells through induction of cancer-specific cellular behaviour and morphology. This implies that cancer cells likely express and utilize a distinct set of adhesion receptors during carcinogenesis. Colon cancer is an excellent model system for the study of this process, since both molecular genetic and morphological changes have been well established for this disease. We recently reported increased expression of the cell surface adhesion receptor, syndecan-2, in several colon carcinoma cell lines. Indeed, increased syndecan-2 expression was necessary for tumourigenic activity, suggesting that syndecan-2 might have value as both a new diagnostic marker and a possible therapeutic target. Here, we review recent advances in understanding the role of syndecan-2 in the carcinogenesis of colon cells, and discuss a leading role for this molecule in a new era for colon cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Cancer Society (2003) Cancer Facts and Figures 2003 Atlanta, GA: American Cancer Society.

    Google Scholar 

  • Anttonen A, Heikkila P, Kajanti M, Jalkanen M, Joensuu H (2001) High syndecan-1 expression is associated with favourable outcome in squamous cell lung carcinoma treated with radical surgery. Lung Cancer 32: 297–305.

    Google Scholar 

  • Bass MD, Humphries MJ (2002) Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signaling. Biochem J 368: 1–15.

    Google Scholar 

  • Bayer-Garner IB, Smoller BR (2001) The expression of syndecan-1 is preferentially reduced compared with that of E-cadherin in acantholytic squamous cell carcinoma. J Cutan Pathol 28: 83–89.

    Google Scholar 

  • Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ (1992) Biology of the syndecans: A family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 8: 365–393.

    Google Scholar 

  • Boudreau N, Bissell MJ (1998) Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr Opin Cell Biol 10: 640–646.

    Google Scholar 

  • Brakebusch C, Bouvard D, Stanchi F, Sakai T, Fassler R (2002) Integrins in invasive growth. J Clin Invest 109: 999–1006.

    Google Scholar 

  • Carey DJ (1997) Syndecans: Multifunctional cell-surface co-receptors. Biochem J 327: 1–16.

    Google Scholar 

  • Chung DC (2000) The genetic basis of colorectal cancer: Insights into critical pathways of tumourigenesis. Gastroenterology 119: 854–865.

    Google Scholar 

  • Chung DC, Rustgi AK (2003) The hereditary nonpolyposis colorectal cancer syndrome: Genetics and clinical implications. Ann Int Med 138: 560–570.

    Google Scholar 

  • Conejo JR, Kleeff J, Koliopanos A, Matsuda K, Zhu ZW, Goecke H, Bicheng N, Zimmermann A, Korc M, Friess H, Buchler MW (2000) Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int J Cancer 88: 12–20.

    Google Scholar 

  • Contreras HR, Fabre M, Granes F, Casaroli-Marano R, Rocamora N, Herreros AG, Reina M, Vilaro S (2001) Syndecan-2 expression in colorectal cancer-derived HT-29 M6 epithelial cells induces a migratory phenotype. Biochem Biophys Res Commun 286: 742–751.

    Google Scholar 

  • David G, Bai XM, Van der Schueren B, Marynen P, Cassiman JJ, Van den Berghe H (1993) Spatial and temporal changes in the expression of fibroglycan (syndecan-2) during mouse embryonic development. Development 119: 841–854.

    Google Scholar 

  • Ethell IM, Yamaguchi Y (1999) Cell surface heparan sulfate pro-teoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J Cell Biol 144: 575–586.

    Google Scholar 

  • Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M (2001) Shedding of syndecan-1 and-4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metallo-proteinase. J Cell Biol 148: 811–824.

    Google Scholar 

  • Fornaro M, Tallini G, Bofetiado CJ, Bosari S, Languino LR (1996) Down-regulation of beta 1C integrin, an inhibitor of cell proliferation, in prostate carcinoma. Am J Pathol 149: 765–773.

    Google Scholar 

  • Gao Y, Li M, Chen W, Simons M (2000) Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration. J Cell Physiol 184: 373–379.

    Google Scholar 

  • Granes F, Garcia R, Casaroli-Marano RP, Castel S, Rocamora N, Reina M, Urena JM, Vilaro S (1999) Syndecan-2 induces filopodia by active cdc42Hs. Exp Cell Res 248: 439–456.

    Google Scholar 

  • Granes F, Urena JM, Rocamora N, Vilaro S (2000) Ezrin links syndecan-2 to the cytoskeleton. J Cell Sci 113: 1267–1276.

    Google Scholar 

  • Grootjans JJ, Zimmermann P, Reekmans G, Smets A, Degeest G, Durr J, David G (1997) Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc Natl Acad Sci USA 94: 13683–13688.

    Google Scholar 

  • Guarino M, Micheli P, Pallotti F, Giordano F (1999) Pathological relevance of epithelial and mesenchymal phenotype plasticity. Pathol Res Pract 195: 379–389.

    Google Scholar 

  • Gumbiner BM (1996) Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 84: 345–357.

    Google Scholar 

  • Hazan RB, Kang L, Whooley BP, Borgen PI (1997) N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhes Commun 4: 399–411.

    Google Scholar 

  • Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2: 91–100.

    Google Scholar 

  • Hoshikawa Y, Kwon HJ, Yoshida M, Horinouchi S, Beppu T (1994) Trichostatin Ainduces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines. Exp Cell Res 214: 189–197.

    Google Scholar 

  • Hunt NC, Douglas-Jones AG, Jasani B, Morgan JM, Pignatelli M(1997) Loss of E-cadherin expression associated with lymph node metastases in small breast carcinomas. Virchows Arch 430: 285–289.

    Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687.

    Google Scholar 

  • Inki P, Stenback F, Grenman S, Jalkanen M(1994) Immunohistochemical localization of syndecan-1 in normal and pathological human uterine cervix. J Pathol 172: 349–355.

    Google Scholar 

  • Jayson GC, Vives C, Paraskeva C, Schofield K, Coutts J, Fleetwood A, Gallagher JT (1999) Coordinated modulation of the fibroblast growth factor dual receptor mechanism during transformation from human colon adenoma to carcinoma. Int J Cancer 82: 298–304.

    Google Scholar 

  • Joensuu H, Anttonen A, Eriksson M, Makitaro R, Alfthan H, Kinnula V, Leppa S (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62: 5210–5217.

    Google Scholar 

  • Kim Y, Park H, Lim Y, Han I, Kwon HJ, Woods A, Oh ES (2003) Decreased syndecan-2 expression correlates with trichostatin-A induced-morphological changes and reduced tumourigenic activity in colon carcinoma cells. Oncogene 22: 826–830.

    Google Scholar 

  • Klass CM, Couchman JR, Woods A (2000) Control of extracellular matrix assembly by syndecan-2 proteoglycan. J Cell Sci 113: 493–506.

    Google Scholar 

  • Koo TH, Lee JJ, Kim EM, Kim KW, Kim HD, Lee JH (2002) Syntenin is overexpressed and promotes cell migration in metastatic human breast and gastric cancer cell lines. Oncogene 21: 4080–4088.

    Google Scholar 

  • Kusano Y, Oguri K, Nagayasu Y, Munesue S, Ishihara M, Saiki I, Yonekura H, Yamamoto H, Okayama M (2000) Participation of syndecan 2 in the induction of stress fibre formation in cooperation with integrin alpha5beta1: Structural characteristics of heparan sulfate chains with avidity to COOH-terminal heparin-binding domain of fibronectin. Exp Cell Res 256: 434–444.

    Google Scholar 

  • Kwon HJ, Owa T, Hassig CA, Shimada J, Schreiber SL (1998) Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc Natl Acad Sci USA 95: 356–361.

    Google Scholar 

  • Leppa S, Mali M, Miettinen HM, Jalkanen M (1992) Syndecan expression regulates cell morphology and growth of mouse mammary epithelial tumour cells. Proc Natl Acad Sci USA 89: 932–936.

    Google Scholar 

  • Liebersbach BF, Sanderson RD(1994) Expression of syndecan-1 inhibits cell invasion into type I collagen expression of syndecan-1 inhibits cell invasion into collagen and that loss of syndecan-1 expression may be necessary prior to the migration of normal or metastatic cells. J Biol Chem 269: 20013–22019.

    Google Scholar 

  • Lim Y, Han I, Kwon HJ, Oh ES (2002) Trichostatin A-induced detransformation correlates with decreased focal adhesion kinase phosphorylation at tyrosine 861 in ras-transformed fibroblasts. J Biol Chem 277: 12735–12740.

    Google Scholar 

  • Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411: 375–379.

    Google Scholar 

  • Liu W, Litwack ED, Stanley MJ, Langford JK, Lander AD, Sanderson RD (1998) Heparan sulfate proteoglycans as adhesive and anti-invasive molecules. Syndecans and glypican have distinct functions. J Biol Chem 273: 22825–22832.

    Google Scholar 

  • Longhurst CM,Jennings LK(1998) Integrin-mediated signal transduction. Cell Mol Life Sci 54: 514–526.

    Google Scholar 

  • Longley RL, Woods A, Fleetwood A, Cowling GJ, Gallagher JT, Couchman JR (1999) Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci 112: 3421–3431.

    Google Scholar 

  • Mali M, Andtfolk H, Miettinen HM, Jalkanen M (1994) Suppression of tumour cell growth by syndecan-1 ectodomain. J Biol Chem 269: 27795–27798.

    Google Scholar 

  • Matsuda K, Maruyama H, Guo F, Kleeff J, Itakura J, Matsumoto Y, Lander AD, Korc M (2001) Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res 61: 5562–5569.

    Google Scholar 

  • Matsumoto A, Ono M, Fujimoto Y, Gallo RL, Bernfield M, Kohgo Y (1997) Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int J Cancer 74: 482–489.

    Google Scholar 

  • Mercurio AM, Rabinovitz I (2001) Towards a mechanistic under-standing of tumour invasion – lessons from the alpha6beta 4 integrin. Semin Cancer Biol 11: 129–141.

    Google Scholar 

  • Modrowski D, Basle M, Lomri A, Marie PJ (2000) Syndecan-2 is involved in the mitogenic activity and signaling of granulocyte-macrophage colony-stimulating factor in osteoblasts. J Biol Chem 275: 9178–9185.

    Google Scholar 

  • Mulder JW, Wielenga VJ, Pals ST, Offerhaus GJ (1997) p53 and CD44 as clinical markers of tumour progression in colorectal carcinogenesis. Histochem J 29: 439–452.

    Google Scholar 

  • Munesue S, Kusano Y, Oguri K, Itano N, Yoshitomi Y, Nakanishi H, Yamashina I, Okayama M(2002) The role of syndecan-2 in regulation of actin-cytoskeletal organization of Lewis lung carcinoma-derived metastatic clones. Biochem J 363: 201–209.

    Google Scholar 

  • Nanki N, Fujita J, Yang Y, Hojo S, Bandoh S, Yamaji Y, Ishida T (2001) Expression of oncofetal fibronectin and syndecan-1 mRNA in 18 human lung cancer cell lines. Tumour Biol 22: 390–396.

    Google Scholar 

  • Numa F, Hirabayashi K, Kawasaki K, Sakaguchi Y, Sugino N, Suehiro Y, Suminami Y, Hirakawa H, Umayahara K, Nawata S, Ogata H, Kato H (2002) Syndecan-1 expression in cancer of the uterine cervix: Association with lymph node metastasis. Int J Oncol 20: 39–43.

    Google Scholar 

  • Oh ES, Woods A, Lim ST, Theibert AW, Couchman JR (1998) Syndecan-4 proteoglycan cytoplasmic domain and phosphatidy-linositol 4,5-bisphosphate coordinately regulate protein kinase C activity. J Biol Chem 273: 10624–10629.

    Google Scholar 

  • Okegawa T, Li Y, Pong RC, Hsieh JT (2002) Cell adhesion proteins as tumour suppressors. J Uro l167: 1836–1843.

    Google Scholar 

  • Park H, Kim Y, Lim Y, Han I, Oh ES (2002) Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J Biol Chem 277: 29730–29736.

    Google Scholar 

  • Park PW, Pier GB, Hinkes MT, Bernfield M (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411: 98–102.

    Google Scholar 

  • Parker C, Rampaul RS, Pinder SE, Bell JA, Wencyk PM, Blamey RW, Nicholson RI, Robertson JF (2001) E-cadherin as a prognostic indicator in primary breast cancer. Br J Cancer 85: 1958–1963.

    Google Scholar 

  • Pawlak G, Helfman DM (2001) Cytoskeletal changes in cell transformation and tumourigenesis. Curr Opin Genet Dev 11: 41–47.

    Google Scholar 

  • Penna C, Nordlinger B (2003) Surgery and local treatments of liver metastases from colorectal cancer: How to improve results. Scand J Surg 92: 90–96.

    Google Scholar 

  • Piard F, Chapusot C, Ecarnot-Laubriet A, Ponnelle T, Martin L (2002) Molecular markers of heterogeneity in colorectal cancers and adenomas. Eur J Cancer Prev 11: 85–97.

    Google Scholar 

  • Pupa SM, Menard S, Forti S, Tagliabue E (2002) New insights into the role of extracellular matrix during tumour onset and progression. J Cell Physiol 192: 259–267.

    Google Scholar 

  • Rapraeger AC (2000) Syndecan-regulated receptor signaling. J Cell Biol 149: 995–998.

    Google Scholar 

  • Rapraeger AC (2001) Molecular interactions of syndecans during development. Semin Cell Dev Biol 12: 107–116.

    Google Scholar 

  • Rintala M, Inki P, Klemi P, Jalkanen M, Grenman S (1999) Association of syndecan-1 with tumour grade and histology in primary invasive cervical carcinoma. Gynecol Oncol 75: 372–378.

    Google Scholar 

  • Simons M, Horowitz A (2001) Syndecan-4-mediated signaling. Cell Signal 13: 855–862.

    Google Scholar 

  • Skubitz AP (2002) Adhesion molecules. Cancer Treat Res 107: 305–329.

    Google Scholar 

  • Soukka T, Pohjola J, Inki P, Happonen RP (2000) Reduction of syndecan-1 expression is associated with dysplastic oral epithelium. J Oral Pathol Med 29: 308–313.

    Google Scholar 

  • Stanley MJ, Stanley MW, Sanderson RD, Zera R (1999) Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. Am J Clin Pathol 112: 377–383.

    Google Scholar 

  • Subramanian SV, Fitzgerald ML, Bernfield M(1997) Regulated shedding of syndecans-1 and-4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272: 14713–14720.

    Google Scholar 

  • Suzuki K, Takahashi K (1999) Reduced substratum adhesion and decreased expressions of 1 and 4 integrins in human breast cancer cells with a property of anchorage-independent growth. Int J Oncol 14: 897–904.

    Google Scholar 

  • Troyanovsky SM (1999) Mechanism of cell–cell adhesion complex assembly. Curr Opin Cell Biol 11: 561–566.

    Google Scholar 

  • Wiksten JP, Lundin J, Nordling S, Lundin M, Kokkola A, von Bogus-lawski K, Haglund C (2001) Epithelial and stromal syndecan-1 expression as predictor of outcome in patients with gastric cancer. Int J Cancer 95: 1–6.

    Google Scholar 

  • Woods A, Couchman JR (1994) Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell 5: 183–192.

    Google Scholar 

  • Woods A, Couchman JR (2001) Syndecan-4 and focal adhesion function. Curr Opin Cell Biol 13: 578–583.

    Google Scholar 

  • Woods A, Oh ES, Couchman JR (1998) Syndecan proteoglycans and cell adhesion. Matrix Biol 17: 477–483.

    Google Scholar 

  • Yang Y, Yaccoby S, Liu W, Langford JK, Pumphrey CY, Theus A, Epstein J, Sanderson RD (2002) Soluble syndecan-1 promotes growth of myeloma tumours in vivo. expressing soluble syndecan-1 are hyperinvasive in collagen gels relative to controls. Blood 100: 610–617.

    Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265: 17174–17179.

    Google Scholar 

  • Yu Q, Stamenkovi I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumour invasion and angiogenesis. Genes Dev 14: 163–176.

    Google Scholar 

  • Zellweger T, Ninck C, Mirlacher M, Annefeld M, Glass AG, Gasser TC, Mihatsch MJ, Gelmann EP, Bubendorf L (2003) Tissue microarray analysis reveals prognostic significance of syndecan-1 expression in prostate cancer. Prostate 55: 20–29.

    Google Scholar 

  • Zimmermann P, David G(1999) The syndecans, tuners of transmembrane signaling. FASEB J 13: S91–S100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, I., Park, H. & Oh, ES. New Insights into Syndecan-2 Expression and Tumourigenic Activity in Colon Carcinoma Cells. Histochem J 35, 319–326 (2004). https://doi.org/10.1023/B:HIJO.0000032363.78829.4e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HIJO.0000032363.78829.4e

Keywords

Navigation