Skip to main content
Log in

Fatigue characterization of a polymer foam to use as a cancellous bone analog material in the assessment of orthopaedic devices

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Analog materials are used as a substitute to cancellous bone for in vitro biomechanical tests due to their uniformity, consistency in properties and availability. To date, only the static material properties of these materials have been assessed, although they are often used in fatigue tests. Cancellous bone exhibits complex material behavior when subjected to fatigue loads, including modulus degradation, accumulation of permanent strain and increasing hysteresis. Analog materials should exhibit similar fatigue behavior to cancellous bone if they are to be used in cyclic loading tests. In our study, a polymer foam (commercial name HEREX® C70.55) has been studied for its static and fatigue behavior and compared with that of cancellous bone. In compression, the foam exhibited qualitatively similar mechanical behavior, but the degree of modulus degradation and accumulation of permanent strain was lower than expected for cancellous bone. In general, the tensile properties of the foam were greater than found in compression, the opposite to the mechanical behavior of cancellous bone. The methodology employed here could form the basis of selecting suitable analog materials for cancellous bone in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Behrens, P. S. Walker and H. Shoji, J. Biomech. 7 (1974) 201.

    Google Scholar 

  2. T. D. Brown and A. B. Ferguson, Jr, Acta Orthop. Scan. 51 (1980) 429.

    Google Scholar 

  3. R. Hodgskinson and J. D. Currey, J. Mater. Sci. Mater. Med. 3 (1992) 377.

    Google Scholar 

  4. I. Hvid, Dan. Med. Bull. 35 (1988) 345.

    Google Scholar 

  5. T. M. Keaveny and W. C. Hayes, J. Biomech. Eng. 115 (1993) 534.

    Google Scholar 

  6. T. M. Keaveny, R. E. Borchers, L. J. Gibson and W. C. Hayes, J. Biomech. 26 (1993) 991.

    Google Scholar 

  7. T. S. Keller, J. Biomech. 27 (1994) 1159.

    Google Scholar 

  8. F. Linde and I. Hvid, ibid. 22 (1989) 485.

    Google Scholar 

  9. M. Martens, R. L. Van Audekercke, P. Delport, P. de Meester and J. C. Mulier, ibid. 16 (1983) 971.

    Google Scholar 

  10. A. Odgaard and F. Linde, ibid. 24 (1991) 691.

    Google Scholar 

  11. L. Cristofolini, M. Viceconti, A. Cappello and A. Toni, ibid. 29 (1996) 525.

    Google Scholar 

  12. A. Shirazi-Adi, O. Patenaude, M. Damark and D. Zukor, J. Biomech. Eng. 123 (2001) 391.

    Google Scholar 

  13. J. A. Q. Simoes, M. A. Vaz, J. A. G. Chousal, M. Taylor and S. Blatcher, in Proceedings of the International Conference on Advanced Technology in Experimental Mechanics, Wakayama, 1997, p. 423.

  14. J. A. Szivek, M. Thomas and J. B. Benjamin, J. Appl. Biomater. 4 (1993) 269.

    Google Scholar 

  15. J. A. Szivek, M. Thomas and J. B. Benjamin, ibid. 6 (1995) 125.

    Google Scholar 

  16. S. A. Maher, P. J. Prendergast and C. G. Lyons, Clin. Biomech. 16 (2001) 307.

    Google Scholar 

  17. ASTM F1839-97 (1998) p. 1278.

  18. W. E. Caler and D. R. Carter, J. Biomech. 22 (1989) 625.

    Google Scholar 

  19. C. A. Pattin, W. E. Caler and D. R. Carter, ibid. 29 (1996) 69.

    Google Scholar 

  20. P. Zioupos, X. T. Wang and J. D. Currey, Clin. Biomech. 11 (1996) 365.

    Google Scholar 

  21. S. M. Bowman, X. E. Guo, D. W. Cheng, T. M. Keaveny, L. J. Gibson, W. C. Hayes and T. A. Mc Mohan, J. Biomech. Eng. 120 (1998) 647.

    Google Scholar 

  22. S. M. Haddock, O. C. Yeh, P. V. Mummaneni, W. S. Rosenberg and T. M. Keaveny, 46th Annual Meeting, Orthopaedic Research Society, Orlando, Florida, March 12–15, 2000.

    Google Scholar 

  23. M. C. Michel, X. E. Guo, L. J. Gibson, T. A. Mcmohan and W. C. Hayes, J. Biomech. 26 (1993) 453.

    Google Scholar 

  24. T. M. Keaveny, X. E. Guo, E. F. Watchel, T. A. Mcmohan and W. C. Hayes, ibid. 27 (1994) 1127.

    Google Scholar 

  25. R. B. Ashman, J. Y. Rho and C. H. Turner, ibid. 22 (1989) 895.

    Google Scholar 

  26. L. Rohl, E. Larsen, F. Linde, A. Odgaard and J. Jorgensen, ibid. 24 (1991) 1143.

    Google Scholar 

  27. D. R. Carter, G. H. Schwab and D. M. Spengler, Acta Orthop. Scand. 51 (1980) 733.

    Google Scholar 

  28. T. M. Keaveny, E. F. Wachtel, C. M. Ford and W. C. Hayes, J. Biomech. 27 (1994) 1137.

    Google Scholar 

  29. J. S. Huang and J. Y. Lin, Acta Mater. 44 (1996) 289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Palissery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palissery, V., Taylor, M. & Browne, M. Fatigue characterization of a polymer foam to use as a cancellous bone analog material in the assessment of orthopaedic devices. Journal of Materials Science: Materials in Medicine 15, 61–67 (2004). https://doi.org/10.1023/B:JMSM.0000010098.65572.3b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000010098.65572.3b

Keywords

Navigation