Skip to main content
Log in

Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study examines the link(s) between the suspension behavior of calcium deficient apatites (CDAs) and biphasic calcium phosphate (BCP), as measured by the ζ-potential, with respect to both whole bone and osteoblasts. CDA is fabricated by hydrolyzing an acidic CaP such as dicalcium diphosphate dihydrate (DCPD; CaHPO4·2H2O) and has a structure and composition close to bone apatite. Sintering CDA results in the formation of BCP ceramics consisting of mixtures of hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP), with the HA/β-TCP weight ratio proportional to the Ca/P ratio of CDA. The choice of the base for the DCPD hydrolysis allows various ionic partial substitution of the formed CDA. Na for Ca partial substitution is of interest because of the resulting improvement in mechanical properties of the resulting BCP ceramics and NH4OH was used as a negative control. The ζ-potential was measured for these materials and the stability of the ceramic to bone interaction calculated. ζ-potential values decrease for CDA(NH4OH) versus CDA(NaOH) and increase for BCP(NH4OH) versus BCP(NaOH). While results of these analyses indicate that NH4OH and NaOH processed CDA and BCP will likely yield osteoblast attachment in vivo, differences in the ζ-potentials may explain varying degrees of cell attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Oppermann, M. J. Crimp and D. Bement, J. Biomed. Mater. Res. 42 (1998) 412.

    Article  PubMed  Google Scholar 

  2. M. J. Crimp, D. A. Oppermann and U. Doctor, in “Bioceramics: Materials and Applications III” (American Ceramic Society, 2000) p. 1.

  3. F. B. Bagambisa, U. Joos and W. Schilli, J. Biomed. Mater. Res. 27 (1993) 1047.

    PubMed  Google Scholar 

  4. F. B. Bagambisa, U. Joos and W. Schilli, Int. J. Oral Maxillofac. Implants 5 (1990) 217.

    PubMed  Google Scholar 

  5. B. A. Wilson and M. J. Crimp, Langmuir, 9 (1993) 2836.

    Google Scholar 

  6. O. Malard, J. M. Bouler, J. Guicheux, D. Heymann, P. Pilet, C. Coquard and G. Daculsi, J. Biomed. Mater. Res. 46 (1999) 103.

    Article  PubMed  Google Scholar 

  7. J. Toquet, R. Rohanizadeh, J. Guicheux, S. Couillaud, N. Passuti, G. Daculsi and D. Heymann, ibid. 44 (1999) 98.

    Article  PubMed  Google Scholar 

  8. J. Delecrin and G. Daculsi, Cells Mater. 4 (1994) 51.

    Google Scholar 

  9. J. C. Elliott, in “Structure and Chemistry of the Apatites and Other Calcium Orthophosphates” (Elsevier, Amsterdam, 1994).

    Google Scholar 

  10. R. Z. Legeros, Monogr. Oral Sci. 15 (1991) 1.

    PubMed  Google Scholar 

  11. J. M. Bouler, R. Z. Legeros and G. Daculsi, J. Biomed. Mater. Res. 51 (2000) 680.

    Article  PubMed  Google Scholar 

  12. K. Ishikawa, P. Ducheyne and S. Radin, J. Mater. Sci.: Mater. Med. 4 (1993) 165.

    Google Scholar 

  13. O. Gauthier, J.-M. Bouler, E. Aguado, R. Z. Legeros, P. Pilet and G. Daclusi, ibid. 10 (1999) 199.

    Article  Google Scholar 

  14. R. W. O'Brien, J. Fluid Mech. 190 (1986) 71.

    Google Scholar 

  15. R. W. O'Brien, ibid. 212 (1990) 81.

    Google Scholar 

  16. T. Oja, Matec Applied Sciences Inc., New York, Personal communication.

  17. R. Hogg, T. W. Healy and D. W. Fuerstenau, Trans. Faraday Soc. 66 (1966) 490.

    Google Scholar 

  18. I. O. Smith, M. K. Soto, M. J. Baumann and L. R. Mccabe, Ceramic Trans. Bioceramics: Mater. Appl. IV 147 (2003) 123.

    Google Scholar 

  19. P. Weiss, M. Lapkowski, R. Z. Legeros, J. M. Bouler, A. Jean and G. Daclusi, J. Mater. Sci.: Mater. Med. 8 (1997) 621.

    Article  Google Scholar 

  20. R. M. Kowalchuk, S. R. Pollack and T. A. Corcoran, J. Biomed. Mater. Res. 29 (1995) 47.

    PubMed  Google Scholar 

  21. J. F. Key, R. H. Doremus and M. Jarcho, in Transactions of the 4th Annual Meeting of the Society of the Biomaterials 10th International Biomaterial Symposium (1978) 154.

  22. P. N. Deaza, Z. B. Luklinska, M. Anseau, F. Guitian and S. Deaza, J. Microsc. 182 (1996) 24.

    PubMed  Google Scholar 

  23. L. L. Hench, in “Bioceramics: Materials Characteristics Versus In Vivo Behavior, Vol. 523”, edited by P. Ducheyne and J. Lemons (Annals N.Y. Academic Science, 1988) p. 54.

  24. R. Shu, R. Mcmullen, M. J. Baumann and L. R. Mccabe, J. Biomed. Mater. Res. 67A (2003) 1196.

    Article  PubMed  Google Scholar 

  25. P. Ducheyne, C. S. Kim and S. R. Pollack, ibid. 26 (1992) 147.

    PubMed  Google Scholar 

  26. B. V. Velamekanni and F. F. Lange, J. Am. Ceram. Soc. 74 (1991) 166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Baumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, I.O., Baumann, M.J., Obadia, L. et al. Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing. Journal of Materials Science: Materials in Medicine 15, 841–846 (2004). https://doi.org/10.1023/B:JMSM.0000036270.68200.97

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000036270.68200.97

Keywords

Navigation