Skip to main content
Log in

Porcine collagen crosslinking, degradation and its capability for fibroblast adhesion and proliferation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porcine dermal collagen permanently crosslinked with hexamethylene diisocyanate was investigated for its suitability as a dermal tissue engineering matrix. It was found that the chemically crosslinked collagen had far fewer free lysine groups per collagen molecule than did the uncrosslinked matrix. The ability of the matrix to support human primary fibroblast outgrowth from explants was compared for matrices that had been presoaked in various solutions, including fibroblast media, cysteine and phosphate buffered saline (PBS). It was found that superior cell outgrowth was obtained after soaking with fibroblast media and PBS. The fibroblast attachment properties of the matrix were compared against tissue culture plastic and PET. The collagen matrix showed the least amount of cell retention compared to the other to matrices, however, the general trends were similar for all three scaffolds. Longer term cultures on the collagen showed fibroblasts covering the matrix stacking up on each other and bridging natural hair follicles. However, it was also observed that the fibroblasts were not able to penetrate into the matrix structure. This was believed to result from the chemical crosslinking, as shown by the resistance of the matrix to degradation by collagenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chevallay and D. Herbage, Med. Biol. Eng. Comp. 38 (2000) 211.

    Google Scholar 

  2. L. H. H. Olde Damink, M. Dijkstra, M. Van Luyn, P. Van Wachem, P. Nieuwenhuis and J. Feijen, J. Mater. Sci.: Mater. Med. 6 (1995) 429.

    Google Scholar 

  3. J. Pachence, J. Biomed. Mat. Res. (Appl. Biomater.) 33 (1996) 35.

    Google Scholar 

  4. W. D. Shingleton, D. J. Hodges, P. Brick and T. E. Cawston, Biochim. Biolog. Cell. 74 (1996) 759.

    Google Scholar 

  5. V. Everts, E. Vanderzee, L. Creemers and W. Beertsen, Histochem. J. 28 (1996) 229.

    PubMed  Google Scholar 

  6. U. Benbow, M. P. Schoenermark, T. I. Mitchell, J. L. Rutter, K. Shimokawa, H. Nagase and C. E. Brinckerhoff, J. Biol. Chem. 274 (1999) 25371.

    Article  PubMed  Google Scholar 

  7. K. Hotary, E. Allen, A. Punturieri, I. Yana and S. Weiss, J. Cell Biol. 149 (2000) 1309.

    Article  PubMed  Google Scholar 

  8. W. Friess, Eur. J. Pharmaceut. Biopharmaceut. 45 (1998) 113.

    Article  Google Scholar 

  9. A. Bailey, Wound Rep. Reg. 8 (2000) 5.

    Article  Google Scholar 

  10. G. Reddy and C. Enwemeka, Clin. Biochem. 29 (1996) 225.

    Article  PubMed  Google Scholar 

  11. W. A. Bubnis and C. M. Offner, Anal. Biochem. 207 (1992) 129.

    PubMed  Google Scholar 

  12. M. Kakade and I. Liener, ibid. 27 (1969) 273.

    PubMed  Google Scholar 

  13. T. Mosmann, J. Immunol. Meth. 65 (1983) 55.

    Article  Google Scholar 

  14. L. Bellincampi and M. Dunn, J. Appl. Polym. Sci. 63 (1997) 1493.

    Google Scholar 

  15. S. Nagahara and T. Matsuda, J. Biomed. Mater. Res. 32 (1996) 677.

    Article  PubMed  Google Scholar 

  16. C. Ranucci, A. Kumar, S. P. Batra and P. V. Moghe, Biomaterials 21 (2000) 783.

    Article  PubMed  Google Scholar 

  17. L. Olde Damink, P. Dijkstra, M. Van Luyn, P. Van Wachem, P. Nieuwenhuis and J. Feijen, J. Mater. Sci.: Mater. Med. 6 (1995) 460.

    Google Scholar 

  18. L. Olde Damink, P. Dijkstra, M. Van Luyn, P. Van Wachem, P. Nieuwenhuis and J. Feijen, J. Biomed. Mater. Res. 29 (1995) 139.

    PubMed  Google Scholar 

  19. M. Van Luyn, P. Van Wachem, L. Olde Damink, P. Dijkstra, J. Feijen and P. Nieuwenhuis, ibid. 26 (1992) 1091.

    PubMed  Google Scholar 

  20. N. Krejci-Papa, A. Hoang and J. Hansbrough, Tissue Eng. 5 (1999) 6.

    Google Scholar 

  21. M. Van Luyn, P. Van Wachem, L. Olde Damink, P. Dijkstra, J. Feijen and P. Nieuwenhuis, Biomaterials 13 (1992) 1017.

    Article  PubMed  Google Scholar 

  22. M. Dunn, L. Bellincampi, A. Tria and J. Zawadsky, J. Appl. Polym. Sci. 63 (1997) 1423.

    Google Scholar 

  23. J. Ulreich and M. Chvapil, J. Biomed. Mater. Res. 15 (1981) 913.

    PubMed  Google Scholar 

  24. M. Chvapil, D. Speer, W. Mora and C. Eskelson, J. Surg. Res. 35 (1983) 402.

    Article  PubMed  Google Scholar 

  25. P. Van Wachem, M. Van Luyn, P. Nieuwenhuis, H. Koerten, L. Olde Damink, H. Ten Hoopen and J. Feijen, Biomaterials 12 (1991) 215.

    Article  PubMed  Google Scholar 

  26. M. Chvapil, US Pat. 5078744 (1992).

  27. R. Zeeman, P. J. Dijkstra, P. B. Van Wachem, M. J. A. Van Luyn, M. Hendriks, P. T. Cahalan and J. Feijen, Biomaterials 20 (1999) 921.

    Article  PubMed  Google Scholar 

  28. M. Overhaus, J. Heckenkamp, S. Kossodo, D. Leszczynski and G. Lamuraglia, Circ Res. 86 (2000) 334.

    PubMed  Google Scholar 

  29. D. Wisser and J. Steffes, Burns 29 (2003) 4, 375.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian B. Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarman-Smith, M.L., Bodamyali, T., Stevens, C. et al. Porcine collagen crosslinking, degradation and its capability for fibroblast adhesion and proliferation. Journal of Materials Science: Materials in Medicine 15, 925–932 (2004). https://doi.org/10.1023/B:JMSM.0000036281.47596.cc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000036281.47596.cc

Keywords

Navigation