Skip to main content
Log in

Myocardial angiogenesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Coronary angiogenesis and collateral growth are chronic adaptations to myocardial ischemia, which are aimed at restoring coronary blood flow and salvaging myocardium in an ischemic region. Although we have assumed that myriad numbers of growth factors are involving in this adaptation, details in the underlying mechanisms, i.e., number of angiogenic factors, angiostatic factors, their receptors/signaling cascades, interactions/crosstalk among the signaling pathways and receptors, and the time course of expression/function of a particular factor or pathway during the successful adaptation are still unclear; they are, probably, harmonized like a symphony. Although there is as of yet no consensus about the mechanisms and causal factors for these cononary adaptations to ischemia, recent evidence strongly suggests that a balance between growth factors and growth inhibitors is critical. In this review we introduce vascular endothelial growth factor, angiopoietins, and angiostatin, as factors playing pivotal roles in coronary angiogenesis and collateral growth. (Mol Cell Biochem 264: 35–44, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Bonow RO: Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: Evidence for a dose-dependent effect. Circulation 101: 118–121, 2000

    PubMed  Google Scholar 

  2. Ruel M, Laham RJ, Parker JA, Post MJ, Ware JA, Simons M, Sellke FW: Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. J Thorac Cardiovasc Surg 124: 28–34, 2002

    Article  PubMed  Google Scholar 

  3. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER: The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 107: 1359–1365, 2003

    Article  PubMed  Google Scholar 

  4. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA: Pharmacological treatment of coronary artery disease with recom-binant fibroblast growth factor-2: Double-blind, randomized, controlled clinical trial. Circulation 105: 788–793, 2002

    Article  PubMed  Google Scholar 

  5. Libby P, Schonbeck U: Drilling for oxygen: Angiogenesis involves pro-teolysis of the extracellular matrix. Circ Res 89: 195–197, 2001

    PubMed  Google Scholar 

  6. Pepper MS: Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21: 1104–1117, 2001

    PubMed  Google Scholar 

  7. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, Moore MA, Rafii S: Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193: 1005–1014, 2001

    Article  PubMed  Google Scholar 

  8. Crowther M, Brown NJ, Bishop ET, Lewis CE: Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 70: 478–490, 2001

    PubMed  Google Scholar 

  9. Ferrara N: Vascular endothelial growth factor and the regulation of an-giogenesis. Recent Prog Horm Res 55: 15–35; discussion 35-16, 2000

    PubMed  Google Scholar 

  10. Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS: Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol 20: 7282–7291, 2000

    Article  PubMed  Google Scholar 

  11. Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J, Risau W: The vascular endothelial growth factor receptor Flt-1 mediates bio-logical activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 271: 17629–17634, 1996

    Article  PubMed  Google Scholar 

  12. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–1309, 1989

    PubMed  Google Scholar 

  13. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983–985, 1983

    PubMed  Google Scholar 

  14. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT: Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309–1312, 1989

    PubMed  Google Scholar 

  15. Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, Detmar M: Angiogenesis promoted by vascular endothelial growth factor: Reg-ulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci USA 94: 13612–13617, 1997

    Article  PubMed  Google Scholar 

  16. Pepper MS, Ferrara N, Orci L, Montesano R: Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasmino-gen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 181: 902–906, 1991

    Article  PubMed  Google Scholar 

  17. Ku DD, Zaleski JK, Liu S, Brock TA: Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol 265: H586–H592, 1993.

    PubMed  Google Scholar 

  18. Sellke FW, Wang SY, Stamler A, Lopez JJ, Li J, Simons M: Enhanced microvascular relaxations to VEGF and bFGF in chronically ischemic porcine myocardium. Am J Physiol 271: H713–H720, 1996

    PubMed  Google Scholar 

  19. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM: VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J 18: 3964–3972, 1999

    Article  PubMed  Google Scholar 

  20. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N: Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273: 30336–30343, 1998

    Article  PubMed  Google Scholar 

  21. Fujio Y, Walsh K: Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 274: 16349–16354, 1999

    Article  PubMed  Google Scholar 

  22. Wang H, Keiser JA: Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: Role of flt-1. Circ Res 83: 832–840, 1998

    PubMed  Google Scholar 

  23. Wilson SH, Herrmann J, Lerman LO, Holmes DR, Jr., Napoli C, Ritman EL, Lerman A: Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering. Circulation 105: 415–418, 2002

    Article  PubMed  Google Scholar 

  24. de Boer OJ, van der Wal AC, Teeling P, Becker AE: Leucocyte recruit-ment in rupture prone regions of lipid-rich plaques: A prominent role for neovascularization? Cardiovasc Res 41: 443–449, 1999

    Article  PubMed  Google Scholar 

  25. Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD: Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 7: 425–429, 2001

    Article  PubMed  Google Scholar 

  26. Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A: High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835–846, 1993

    Article  PubMed  Google Scholar 

  27. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, Bohlen P: Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 187: 1579–1586, 1992

    Article  PubMed  Google Scholar 

  28. Zeng H, Zhao D, Yang S, Datta K, Mukhopadhyay D: Heterotrimeric G alpha q/G alpha 11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phosphorylation in vascular permeability factor/VEGF signaling. J Biol Chem 278: 20738–20745, 2003

    Article  PubMed  Google Scholar 

  29. Zeng H, Zhao D, Mukhopadhyay D: KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11-mediated ac-tivation of a small GTPase RhoA. J Biol Chem 277: 46791–46798, 2002

    Article  PubMed  Google Scholar 

  30. Mayo LD, Kessler KM, Pincheira R, Warren RS, Donner DB: Vascular endothelial cell growth factor activates CRE-binding protein by signaling through the KDR receptor tyrosine kinase. J Biol Chem 276: 25184–25189, 2001

    Article  PubMed  Google Scholar 

  31. Issbrucker K, Marti HH, Hippenstiel S, Springmann G, Voswinckel R, Gaumann A, Breier G, Drexler HC, Suttorp N, Clauss M: p38 MAP kinase-a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. Faseb J 17: 262–264, 2003

    PubMed  Google Scholar 

  32. Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F: Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. Embo J 18: 882–892, 1999

    Article  PubMed  Google Scholar 

  33. Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ, Plow EF: A mechanism for modulation of cellular responses to VEGF: Activation of the integrins. Mol Cell 6: 851–860, 2000

    PubMed  Google Scholar 

  34. Giancotti FG, Ruoslahti E: Integrin signaling. Science 285: 1028–1032, 1999

    Article  PubMed  Google Scholar 

  35. Senger DR, Perruzzi CA, Streit M, Koteliansky VE, de Fougerolles AR, Detmar M: The alpha(1)beta(1) and alpha(2)beta(1) integrins pro-vide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160: 195–204, 2002

    PubMed  Google Scholar 

  36. Eliceiri BP: Integrin and growth factor receptor crosstalk. Circ Res 89: 1104–1110, 2001

    PubMed  Google Scholar 

  37. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT: The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255: 989–991, 1992

    PubMed  Google Scholar 

  38. Shibuya M: Role of VEGF-flt receptor system in normal and tumor angiogenesis. Adv Cancer Res 67: 281–316, 1995

    PubMed  Google Scholar 

  39. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 13: 9–22, 1999

    PubMed  Google Scholar 

  40. Zeng H, Zhao D, Mukhopadhyay D: Flt-1-mediated down-regulation of endothelial cell proliferation through pertussis toxin-sensitive G pro-teins, beta gamma subunits, small GTPase CDC42, and partly by Rac-1. J Biol Chem 277: 4003–4009, 2002

    Article  PubMed  Google Scholar 

  41. Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T: Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105: 732–738, 2002

    Article  PubMed  Google Scholar 

  42. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG: Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7: 575–583, 2001

    Article  PubMed  Google Scholar 

  43. Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Golomb G, Carmeliet P, Schaper W, Clauss M: VEGFR-1-selective VEGF homologue PlGF is arteriogenic: Ev-idence for a monocyte-mediated mechanism. Circ Res 92: 378–385, 2003

    Article  PubMed  Google Scholar 

  44. Park JE, Chen HH, Winer J, Houck KA, Ferrara N: Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269: 25646–25654, 1994

    PubMed  Google Scholar 

  45. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D: Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87: 3336–3343, 1996

    PubMed  Google Scholar 

  46. Zhao X, Lu X, Feng Q: Deficiency in endothelial nitric oxide synthase impairs myocardial angiogenesis. Am J Physiol Heart Circ Physiol 283: H2371–H2378, 2002

    PubMed  Google Scholar 

  47. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM: Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101: 2567–2578, 1998

    PubMed  Google Scholar 

  48. Lee PC, Salyapongse AN, Bragdon GA, Shears LL, II, Watkins SC, Edington HD, Billiar TR: Impaired wound healing and angiogenesis in eNOS-deficient mice. Am J Physiol 277: H1600–H1608, 1999

    PubMed  Google Scholar 

  49. Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM: Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation 102: 3098–3103, 2000

    PubMed  Google Scholar 

  50. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK: Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98: 2604–2609, 2001

    Article  PubMed  Google Scholar 

  51. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC: Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100: 3131–3139, 1997.

    PubMed  Google Scholar 

  52. Chin K, Kurashima Y, Ogura T, Tajiri H, Yoshida S, Esumi H: Induction of vascular endothelial growth factor by nitric oxide in human glioblas-toma and hepatocellular carcinoma cells. Oncogene 15: 437–442, 1997

    PubMed  Google Scholar 

  53. Jozkowicz A, Cooke JP, Guevara I, Huk I, Funovics P, Pachinger O, Weidinger F, Dulak J: Genetic augmentation of nitric oxide synthase increases the vascular generation of VEGF. Cardiovasc Res 51: 773–783, 2001

    Article  PubMed  Google Scholar 

  54. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA: Prognostic value of coronary vascular endothelial dysfunction. Circulation 106: 653–658, 2002

    Article  PubMed  Google Scholar 

  55. Katusic ZS: Vascular endothelial dysfunction: Does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol 281: H981–H986, 2001

    PubMed  Google Scholar 

  56. Asahina T, Kashiwagi A, Nishio Y, Ikebuchi M, Harada N, Tanaka Y, Takagi Y, Saeki Y, Kikkawa R, Shigeta Y: Impaired activation of glucose oxidation and NADPH supply in human endothelial cells exposed to H2O2 in high-glucose medium. Diabetes 44: 520–526, 1995

    PubMed  Google Scholar 

  57. Brodsky SV, Morrishow AM, Dharia N, Gross SS, Goligorsky MS: Glucose scavenging of nitric oxide. Am J Physiol Renal Physiol 280: F480–F486, 2001

    PubMed  Google Scholar 

  58. Chin JH, Azhar S, Hoffman BB: Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest 89: 10–18, 1992

    PubMed  Google Scholar 

  59. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M: Hyper-glycemia inhibits endothelial nitric oxide synthase activity by posttrans-lational modification at the Akt site. J Clin Invest 108: 1341–1348, 2001

    Article  PubMed  Google Scholar 

  60. Harrison DG: Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100: 2153–2157, 1997

    PubMed  Google Scholar 

  61. Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM: Angiostatin inhibits coronary angiogenesis dur-ing impaired production of nitric oxide. Circulation 105: 2185–2191, 2002

    Article  PubMed  Google Scholar 

  62. Matsunaga T, Warltier DC, Tessmer J, Weihrauch D, Simons M, Chilian WM: Expression of VEGF and angiopoietins-1 and-2 during ischemia-induced coronary angiogenesis. Am J Physiol Heart Circ Physiol 285: H352–H358, 2003

    PubMed  Google Scholar 

  63. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y: Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376: 70–74, 1995

    Article  PubMed  Google Scholar 

  64. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD: Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161–1169, 1996

    PubMed  Google Scholar 

  65. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC: Direct actions of angiopoietin-1 on human endothelium: Evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79: 213–223, 1999

    PubMed  Google Scholar 

  66. Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H, McClain J, Copeland NG, Gilbert DJ, Jenkins NA, Huang T, Papadopoulos N, Maisonpierre PC, Davis S, Yancopoulos GD: Angiopoietins 3 and 4: Diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA 96: 1904–1909, 1999

    PubMed  Google Scholar 

  67. Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG: Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81: 567–574, 1997

    PubMed  Google Scholar 

  68. Lauren J, Gunji Y, Alitalo K: Is angiopoietin-2 necessary for the initiation of tumor angiogenesis? Am J Pathol 153: 1333–1339, 1998

    PubMed  Google Scholar 

  69. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87: 1171–1180, 1996

    Article  PubMed  Google Scholar 

  70. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, Altieri DC, Sessa WC: Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275: 9102–9105, 2000

    PubMed  Google Scholar 

  71. Harfouche R, Hassessian HM, Guo Y, Faivre V, Srikant CB, Yancopoulos GD, Hussain SN: Mechanisms which mediate the antiapoptotic ef-fects of angiopoietin-1 on endothelial cells. Microvasc Res 64: 135–147, 2002

    Article  PubMed  Google Scholar 

  72. Kim I, Moon SO, Han CY, Pak YK, Moon SK, Kim JJ, Koh GY: The angiopoietin-tie2 system in coronary artery endothelium prevents ox-idized low-density lipoprotein-induced apoptosis. Cardiovasc Res 49: 872–881, 2001

    PubMed  Google Scholar 

  73. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD: Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6: 460–463, 2000

    Article  PubMed  Google Scholar 

  74. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD: Increased vascularization in mice overexpressing angiopoietin-1. Science 282: 468–471, 1998

    PubMed  Google Scholar 

  75. Mandriota SJ, Pepper MS: Regulation of angiopoietin-2 mRNAlevels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83: 852–859, 1998

    PubMed  Google Scholar 

  76. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD: Angiopoietin-2, a nat-ural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55–60, 1997

    PubMed  Google Scholar 

  77. Procopio WN, Pelavin PI, Lee WM, Yeilding NM: Angiopoietin-1 and-2 coiled coil domains mediate distinct homo-oligomerization patterns, but fibrinogen-like domains mediate ligand activity. J Biol Chem 274: 30196–30201, 1999

    Article  PubMed  Google Scholar 

  78. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM: Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83: 233–240, 1998

    PubMed  Google Scholar 

  79. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994–1998, 1999

    Article  PubMed  Google Scholar 

  80. Holash J, Wiegand SJ, Yancopoulos GD: Newmodel of tumor angiogenesis: Dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18: 5356–5362, 1999

    Article  PubMed  Google Scholar 

  81. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328, 1994

    Article  PubMed  Google Scholar 

  82. Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV: Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 96: 2811–2816, 1999

    Article  PubMed  Google Scholar 

  83. Eriksson K, Magnusson P, Dixelius J, Claesson-Welsh L, Cross MJ: Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Lett 536: 19–24, 2003

    Article  PubMed  Google Scholar 

  84. Holmgren L, O'Reilly MS, Folkman J: Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1: 149–153, 1995

    Article  PubMed  Google Scholar 

  85. Claesson-Welsh L, Welsh M, Ito N, Anand-Apte B, Soker S, Zetter B, O'Reilly M, Folkman J: Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA 95: 5579–5583, 1998

    Article  PubMed  Google Scholar 

  86. Lucas R, Holmgren L, Garcia I, Jimenez B, Mandriota SJ, Borlat F, Sim BK, Wu Z, Grau GE, Shing Y, Soff GA, Bouck N, Pepper MS: Multiple.44 forms of angiostatin induce apoptosis in endothelial cells. Blood 92: 4730–4741, 1998

    PubMed  Google Scholar 

  87. Sim BK, MacDonald NJ, Gubish ER: Angiostatin and endostatin: endogenous inhibitors of tumor growth. Cancer Metastasis Rev 19: 181–190, 2000

    Article  PubMed  Google Scholar 

  88. Folkman J: Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29: 15–18, 2002

    Google Scholar 

  89. Falcone DJ, Khan KM, Layne T, Fernandes L: Macrophage formation of angiostatin during inflammation. A byproduct of the activation of plasminogen. J Biol Chem 273: 31480–31485, 1998

    Article  PubMed  Google Scholar 

  90. Koshida R, Ou J, Matsunaga T, Chilian WM, Oldham KT, Ackerman AW, Pritchard KA, Jr.: Angiostatin: A negative regulator of endothelial-dependent vasodilation. Circulation 107: 803–806, 2003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyota, E., Matsunaga, T. & Chilian, W.M. Myocardial angiogenesis. Mol Cell Biochem 264, 35–44 (2004). https://doi.org/10.1023/B:MCBI.0000044372.65864.18

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000044372.65864.18

Navigation