Skip to main content
Log in

Brain Amino Acids During Hyponatremia In Vivo: Clinical Observations and Experimental Studies

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hyponatremia is a highly morbid condition, present in a wide range of human pathologies, that exposes patients to encephalopathic complication and the risk of permanent brain damage and death. Treating hyponatremia has proved to be difficult and still awaits safe management, avoiding the morbid sequelae of demyelinizing and necrotic lesions associated with the use of hypertonic solutions. During acute and chronic hyponatremia in vivo, the brain extrudes the excessive water by decreasing its content of electrolytes and organic osmolytes. At the cellular level, a similar response occurs upon cell swelling. Among the organic osmolytes involved in both responses, free amino acids play a prominent role because of the large intracellular pools often found in nerve cells. An overview of the changes in brain amino acid content during hyponatremia in vivo is presented and the contribution of these changes to the adaptive cell responses involved in volume regulation discussed. Additionally, new data are provided concerning changes in amino acid levels in different regions of the central nervous system after chronic hyponatremia. Results favor the role of taurine, glutamine, glutamate, and aspartate as the main amino acid osmolytes involved in the brain adaptive response to hyponatremia in vivo. Deeper knowledge of the adaptive overall and cellular brain mechanisms activated during hyponatremia would lead to the design of safer therapies for the hyponatremic patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fraser, C. and Arieff, A. 1997. Epidemiology, pathophysiology and management of hyponatremic encephalopathy. Am. J. Med. 102:67–77.

    Google Scholar 

  2. Hartung, T. K., Shofield, E., Short, A. I., Parr, M. J. A., and Henry, J. A. 2002. Hyponatremic states following 3,4-methyl-enedioxymethamphetamine (MDMA, 'ecstasy') ingestion. Q. J. Med. 95:431–437.

    Google Scholar 

  3. Arieff, A. I. 1986. Hyponatremia, convulsions respiratory arrest, and permanent brain damage after elective surgery in healthy women. N. Engl. J. Med. 314:1529–1535.

    Google Scholar 

  4. Fall, P. J. 2000. Hyponatremia and hypernatremia. A systematic approach to causes and their correction. Postgrad. Med. 107:75–82.

    Google Scholar 

  5. Arieff, A. I., Lalch, F., and Massry, S. G. 1976. Neurological manifestations and morbidity of hyponatremia: Correlation with brain water and electrolytes. Medicine 55:121–129.

    Google Scholar 

  6. Laureno, R. 1983. Central pontine myelinolysis following rapid correction of hyponatremia. Ann. Neurol. 13:232–242.

    Google Scholar 

  7. Sterns, R. H., Riggs, J. E., and Schochet, S. S. 1986. Osmotic demyelination syndrome following correction of hyponatremia. N. Engl. J. Med. 314:1535–1542.

    Google Scholar 

  8. Lampl, C. and Yazdi, K. 2002. Central pontine myelinolysis. Eur. Neurol. 47:3–10.

    Google Scholar 

  9. Berl, T. 1990. Treating hyponatremia: Damned if we do and damned if we don't. Kidney Int. 37:1006–1018.

    Google Scholar 

  10. Kleinschmidt-DeMasters, B. K. and Norenberg, M. D. 1981. Rapid correction of hyponatremia causes demyelination: Relation to central pontine myelinolysis. Science 211:1068–1070.

    Google Scholar 

  11. Ayus, J. C., Krothapalli, R. K., and Armstrong, D. L. 1985. Rapid correction of severe hyponatremia in the rat: Histopathological changes in the brain. Am. J. Physiol. 248:F711–F719.

    Google Scholar 

  12. Sterns, R. H., Thomas, D. J., and Herndon, R. M. 1989. Brain dehydration and neurologic deterioration after rapid correction of hyponatremia. Kidney Int. 35:69–75.

    Google Scholar 

  13. Lien, Y. H. 1995. Role of organic osmolytes in myelinolysis: A topographic study in rats after rapid correction of hyponatremia. J. Clin. Invest. 95:1579–1586.

    Google Scholar 

  14. Ayus, J. C., Krothapalli, R. K., Armstrong, D. L., and Norton, H. J. 1989. Symptomatic hyponatremia in rats: Effect of treatment on mortality and brain lesions. Am. J. Physiol. 257:F18–F22.

    Google Scholar 

  15. Gross, P. 2001. Correction of hyponatremia. Sem. Nephrol. 21:269–272.

    Google Scholar 

  16. Thurston, J. H. and Hauhart, R. E. 1987. Brain amino acids decrease in chronic hyponatremia and rapid correction causes brain dehydration: Possible clinical significance. Life Sci. 40:2539–2542.

    Google Scholar 

  17. Bedford, J. J. and Leader, J. P. 1993. Response of tissues of the rat to anisosmolality in vivo. Am. J. Physiol. 264:R1164–R1179.

    Google Scholar 

  18. Sterns, R. H., Baer, J., Ebersol, S., Thomas, D., Lohr, J. W., and Kamm, D. E. 1993. Organic osmolytes in acute hyponatremia. Am. J. Physiol. 264:F833–F836.

    Google Scholar 

  19. Thurston, J. H., Hauhart, R. E., Jones, E. M., and Ater, J. L. 1975. Effects of salt and water loading on carbohydrate and energy metabolism and levels of selected amino acids in the brains of young mice. J. Neurochem. 24:953–957.

    Google Scholar 

  20. Melton, J. E., Patlak, C. S., Pettigrew, K. D., and Cserr, H. F. 1987. Volume regulatory loss of Na, Cl, and K from rat brain during acute hyponatremia. Am. J. Physiol. 252:F661–F669.

    Google Scholar 

  21. Verbalis, J. G. and Gullans, S. R. 1991. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res. 567:274–282.

    Google Scholar 

  22. Lien, Y. H., Shapiro, J. I., and Chan, L. 1991. Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. J. Clin. Invest. 88:303–309.

    Google Scholar 

  23. Kimelberg, H. K. and Frangakis, M. 1986. Volume regulation in primary astrocyte cultures. Adv. Biosci. 67:177–186.

    Google Scholar 

  24. Pasantes-Morales, H. and Schousboe, A. 1988. Volume regulation in astrocytes: A role for taurine as an osmoeffector. J. Neurosci. Res. 20:503–509.

    Google Scholar 

  25. Pasantes-Morales, H., Maar, T. E., and Morán, J. 1993. Cell volume regulation in cultured cerebellar granule neurons. J. Neurosci Res. 34:219–224.

    Google Scholar 

  26. Basavappa, S., Huang, C. C., Mangel, A. W., Lebedev, D. V., Knauf, P. A. and Ellory, J. C. 1996. Swelling-activated amino acid efflux in the human neuroblastoma cell line CHP-100. J. Neurophysiol. 76:764–769.

    Google Scholar 

  27. Lohr, J. W. and Yohe, L. A. 1994. Mechanism of hyposmotic volume regulation in glioma cells. Brain Res. 667:263–268.

    Google Scholar 

  28. Pasantes-Morales, H., Murray, R. A., Lilja, L., and Morán, J. 1994. Regulatory volume decrease in cultured astrocytes: I. Potassium-and chloride-activated permeability. Am. J. Physiol. 266: C165–C171.

    Google Scholar 

  29. Pasantes-Morales, H., Chacón, E., Murray, R. A., and Morán, J. 1994. Properties of osmolyte fluxes activated during regulatory volume decrease in cultured cerebellar granule neurons. J. Neurosci. Res. 37:720–727.

    Google Scholar 

  30. Pasantes-Morales, H. 1996. Volume regulation in brain cells: Cellular and molecular mechanisms. Metab. Brain Dis. 11:187–204.

    Google Scholar 

  31. Thurston, J. H., Hauhart, R. E., and Nelson, J. S. 1987. Adaptive decreases in amino acids (taurine in particular) creatine and electrolytes prevent cerebral edema in chronically hyponatremic mice: Rapid correction causes dehydration and shrinkage of brain. Metab. Brain Dis. 2:223–241.

    Google Scholar 

  32. Olson, J. E. and Li, G. Z. 2000. Osmotic sensitivity of taurine release from hippocampal neuronal and glial cells. Adv. Exp. Med. Biol. 483:213–218.

    Google Scholar 

  33. Pasantes-Morales, H. Murray, R. A., Sánchez-Olea, R. and Morán, J. 1994. Regulatory volume decrease in cultured astrocytes: II. Permeability pathway to amino acids and polyols. Am. J. Physiol. 266:C172–C178.

    Google Scholar 

  34. Kimelberg, H. K., Goderie, S. K., Higman, S., Parra, S. and Waniewski, R. A. 1990. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci. 10:1583–1591.

    Google Scholar 

  35. Law, R. O. 1994. Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex. Biochim. Biophys. Acta. 1221:21–28.

    Google Scholar 

  36. Solís, J. M., Herranz, A. S., Herreras, O., Lerma, J., and Martín del Río, R. 1988. Does taurine act as an osmoregulatory substance in the rat brain? Neurosci. Lett. 91:53–58.

    Google Scholar 

  37. Morán, J., Maar, T., and Pasantes-Morales, H. 1994. Cell volume regulation in taurine-deficient cultured astrocytes. Pages 361–367, in Michalk, D. and Huxtable, R. J.(eds.), Taurine in health and disease. New York: Plenum Press.

    Google Scholar 

  38. Sánchez-Olea, R., Peña, C., Moran, J., and Pasantes-Morales, H. 1993. Inhibition of volume regulation and efflux of osmoregulatory amino acids by blockers of Cl transport in cultured astrocytes. Neurosci Lett. 156:141–144.

    Google Scholar 

  39. Isaacks, R. E., Bender, A. S., Kim, C. Y., Shi, Y. F., and Norenberg, M. D. 1999. Effect of osmolality and anion channel inhibitors on myo-inositol efflux in cultured astrocytes. J. Neurosci. Res. 57:866–871.

    Google Scholar 

  40. Kirk, K. 1997. Swelling-activated organic osmolyte channels. J. Membr. Biol. 158:1–16.

    Google Scholar 

  41. Sánchez-Olea, R., Morán, J., Schousboe, A., and Pasantes-Morales, H. 1991. Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion. Neurosci. Lett. 130:233–236.

    Google Scholar 

  42. Pasantes-Morales, H. and Schousboe, A. 1997. Role of taurine in osmoregulation: Mechanisms and functional implications. Amino Acids 12:281–292.

    Google Scholar 

  43. Verbalis, J. G. and Gullans, S. R. 1993. Rapid correction of hyponatremia produces differential effects on brain osmolyte and electrolyte reaccumulation in rats. Brain Res. 606:19–27.

    Google Scholar 

  44. Silver, S. M., Schroeder, B. M., Bernstein, P., and Sterns, R. H. 1999. Brain adaptation to acute hyponatremia in young rats. Am. J. Physiol. 276:R1595–R1599.

    Google Scholar 

  45. Verbalis, J. G. and Drutarosky, M. D. 1988. Adaptation to chronic hyponatremia in rats. Kidney Int. 34:351–360.

    Google Scholar 

  46. Estévez, A. Y., O'Regan, M. H., Song, D., and Phillis, J. W. 1999. Effects of anion channel blockers on hyposmotically induced amino acid release from the in vivo rat cerebral cortex. Neurochem. Res. 24:447–452.

    Google Scholar 

  47. Balcom, G. J., Lenox, R. H., and Meyerhoff, J. L. 1975. Regional γ-aminobutyric acid levels in rat brain determined after microwave fixation. J. Neurochem. 24:609–613.

    Google Scholar 

  48. Tews, J. K., Carter, S. H., Roa, P. D., and Stone, W. E. 1963. Free amino acids and related compounds in dog brain: Post-mortem and anoxic changes, effects of ammonium chloride infusion, and levels during seizures induced by picrotoxin and by pentylenetetrazol. J. Neurochem. 10:641–653.

    Google Scholar 

  49. Kimelberg, H. K., Rutledge, E., Goderie, S., and Charniga, C. 1995. Astrocytic swelling due to hypotonic or high K+ medium causes inhibition of glutamate and aspartate uptake and increases their release. J. Cereb. Blood Flow. 15:409–416.

    Google Scholar 

  50. Coyle, J. T. Schwarcz, R. 1976. Lesion of striatal neurons with kainic acid provides a model for Huntington's chorea. Nature 263:244–246.

    Google Scholar 

  51. Kirino, T. 1982. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239:57–69.

    Google Scholar 

  52. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. 1984. Blockade of N-methyl D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852.

    Google Scholar 

  53. Foster, A. C., Gill, R., and Woodrudff, G. N. 1988. Neuroprotective effects of MK-801 in vivo: Selectivity and evidence for degeneration mediated by NMDA receptor activation. J. Neurosci. 8:4745–4754.

    Google Scholar 

  54. Andrew, R. D., Fagan, M., Ballyk, B. A., and Rosen, A. S. 1989. Seizure susceptibility and the osmotic state. Brain Res. 498:175–180.

    Google Scholar 

  55. Rosen, A. S. and Andrew, R. D. 1990. Osmotic effects upon excitability in rat neocortical slices. Neuroscience 38:579–590.

    Google Scholar 

  56. Hochman, D. W., Baraban, S. C., Owens, J. W., and Schwartzkroin, P. A. 1995. Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science 270:99–102.

    Google Scholar 

  57. Chebabo, S. R., Hester, M. A., Aitken, P. G., and Somjen, G. G. 1995. Hypotonic exposure enhances synaptic transmission and triggers spreading depression in rat hippocampal tissue slices. Brain Res. 695:203–216.

    Google Scholar 

  58. Schwartzkroin, P. A., Baraban, S. C., and Hochman, D. W. 1998. Osmolarity, ionic flux and brain excitability. Epilepsy Res. 32:275–285.

    Google Scholar 

  59. Garvin, J. E. 1960. A new method for the determination of taurine in tissues. Arch. Biochem. Biophys. 91:219–225.

    Google Scholar 

  60. Salceda, R., Carabez, A., Pacheco, P., and Pasantes-Morales, H. 1979. Taurine levels, uptake and synthesizing enzyme activities in degenerated rat retina. Exp. Eye Res. 28:137–146.

    Google Scholar 

  61. Geddes, J. and Wood, J. D. 1984. Changes in the amino acid content of nerve endings (synaptosomes) induced by drugs that alter the metabolism of glutamate and γ-aminobutyric acid. J. Neurochem. 42:16–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Quesada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massieu, L., Montiel, T., Robles, G. et al. Brain Amino Acids During Hyponatremia In Vivo: Clinical Observations and Experimental Studies. Neurochem Res 29, 73–81 (2004). https://doi.org/10.1023/B:NERE.0000010435.06586.e2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000010435.06586.e2

Navigation