Skip to main content
Log in

Gene Expression Profiling in Fetal, Aged, and Alzheimer Hippocampus: A Continuum of Stress-Related Signaling

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

While specific components of normal brain aging and Alzheimer's disease (AD) appear to be genetically determined, it is not well understood whether AD is due to accelerated aging or if AD represents an independent disease entity superimposed upon senescence. Using gene expression profiling, significant alterations in brain-specific transcription patterns have been observed between AD and age-matched controls. In AD, although a general depression in brain genetic output has been reported, there are robust increases in the expression of potentially neuropathological genes. The data in this study show increases in the RNA abundance patterns for a stress-response, proinflammatory, apoptotic, and angiogenic gene family that occur during the transition from fetal to aged, and again during the transformation from aged to AD brain. Significantly up-regulated RNAs include those encoding stress-induced factors (HSP70), transcriptional repressors (DAXX), pentraxins (SAP), proapoptosis factors (FAS and DAXX), and several inflammatory markers (βAPP, CEX1, NF-IL6, NF-kappaBp100, cyclooxygenase-2, IL-1α and IL-1β precursors and cPLA2). These findings support the hypothesis that there is a continuum of stress-related gene expression as the brain ages and an advancement of inflammatory, apoptotic, and angiogenic gene signaling that correlates with the transition to AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N., and Murtagh, F. R. 1995. An English translation of Alzheimer's 1907 paper, “Uber elne eigenartige Erkankung der Hirnrinde” Clin. Anat. 8:429–431.

    PubMed  Google Scholar 

  2. Butterfield, D. A., Drake, J., Pocernich, C., and Castegna, A. 2001. Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid beta-peptide. Trends Mol. Med. 7:548–554.

    PubMed  Google Scholar 

  3. Sleegers, K. and Van Duijn, C. M. 2001. Alzheimer's disease: genes, pathogenesis and risk prediction. Community Genet. 4:197–203.

    PubMed  Google Scholar 

  4. McGeer, P. L. and McGeer, E. G. 2001. Polymorphisms in inflammatory genes and the risk of Alzheimer disease. Interleukin-1 and the Immunogenetics of Alzheimer disease. J. Neuropathol. Exp. Neurol. 59:471–476.

    Google Scholar 

  5. McGeer, P. L. and McGeer, E. G. 2001. Inflammation, autotoxicity and Alzheimer disease. Neurobiol. Aging 22:799–809.

    PubMed  Google Scholar 

  6. Shastry, B. S. 2001. Molecular and cell biological aspects of Alzheimer disease. J. Hum. Genet. 46:609–618.

    PubMed  Google Scholar 

  7. Selkoe, D. J. 2002. Alzheimer's disease is a synaptic failure, Science 298:789–791.

    PubMed  Google Scholar 

  8. Rocchi, A., Pellegrini, S., Siciliano, G., and Murri, L. 2003. Causative and susceptibility genes for Alzheimer's disease: a review. Brain Res. Bull. 61:1–24.

    PubMed  Google Scholar 

  9. Lukiw, W. J. 2001. Aluminum and gene transcription in the mammalian central nervous system. Pages 147–168, in Exley, C. (ed.), Aluminum and Alzheimer's disease, the science that describes the link, Elsevier Press, New York.

    Google Scholar 

  10. Lukiw, W. J., Rogaev, E. I., and Bazan, N. G. 1996. Synaptic and cytoskeletal RNA message levels in sporadic Alzheimer neocortex. Alzheimer's Research 2:221–227.

    Google Scholar 

  11. Lukiw, W. J., Carver, L. A., LeBlanc, H. J., and Bazan, N. G. 2000. Analysis of 1184 gene transcript levels in AD CA1 hippocampus: synaptic signaling and transcription factor deficits and upregulation of pro-inflammatory pathways. Alzheimer's Reports 3:161–167.

    Google Scholar 

  12. Loring, J. F., Wen, X., Lee, J. M., Seilhamer, J., and Somogyi, R. 2001. Gene expression profile of Alzheimer's disease. DNA and Cell Biology 20:683–695.

    PubMed  Google Scholar 

  13. Colangelo, V., Schurr, J., Ball, M. J., Pelaez, R. P., Bazan, N. G., and Lukiw, W. J. 2002. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70:462–473.

    PubMed  Google Scholar 

  14. Tsuji, T., Shiozaki, A., Kohno, R., Yoshizato, K., and Shimohama, S. 2002. Proteomic profiling and neurodegeneration in Alzheimer's disease. Neurochem. Res. 27:1245–1253.

    PubMed  Google Scholar 

  15. Rogaev, E. I., Sherrington, R., Wu, C., Levesque, G., Liang, Y., Rogaeva, E. A., Ikeda, M., Holman, K., Lin, C., Lukiw, W. J., de Jong, P. J., Fraser, P. E., Rommens, J. M., and St. George-Hyslop, P. 1997. Analysis of the 5′ sequence, genomic structure, and alternative splicing of the presenilin-1 gene (PSEN1) associated with early onset Alzheimer disease. Genomics 40:415–424.

    PubMed  Google Scholar 

  16. Tarkowski, E., Issa, R., Sjogren, M., Wallin, A., Blennow, K., Tarkowski, A., and Kumar, P. 2002. Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol. Aging 23:237–243.

    PubMed  Google Scholar 

  17. Mufson, E. J., Counts, S. E., and Ginsberg, S. D. 2002. Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease. Neurochem. Res. 27:1035–1048.

    PubMed  Google Scholar 

  18. Martin, L. J. 2001. Neuronal cell death in nervous system development, disease, and injury. Int. J. Mol. Med. 7:455–478.

    PubMed  Google Scholar 

  19. Heyman, A., Fillenbaum, G. G., Welsh-Bohmer, K. A., Gearing, M., Mirra, S. S., Mohs, R. C., Peterson, B. L., and Pieper, C. F. 1998. Cerebral infarcts in patients with autopsyproven Alzheimer's disease: CERAD, part XVIII. Consortium to Establish a Registry for Alzheimer's Disease. Neurology 51:159–162.

    PubMed  Google Scholar 

  20. Newell, K. L., Hyman, B. T., Growdon, J. H., and Hedley-Whyte, E. T. 1999. Application of the National Institute on Aging (NIA)-Reagan Institute criteria for the neuropathological diagnosis of Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:1147–1155.

    PubMed  Google Scholar 

  21. Morris, J. C., and Price, J. L. 2001. Pathological correlates of nondemented aging, mild cognitive impairment and early stage Alzheimer's disease. J. Molec. Neuroscience 17:101–118.

    Google Scholar 

  22. Kaufmann, W. A., Barnas, U., Humpel, C., Nowakowski, K., DeCol, C., Gurka, P., Ransmayr, G, Hinterhuber, H., Winkler, H., and Marksteiner, J. 1998. Synaptic loss reflected by secretoneurin-like immunoreactivity in the human hippocampus in Alzheimer's disease. Eur. J. Neurosci. 10:1084–1094.

    PubMed  Google Scholar 

  23. Kril, J. J., Patel, S., Harding, A. J., and Halliday, G. M. 2002. Neuron loss from the hippocampus of Alzheimer's disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol. (Berl) 103:370–306.

    Google Scholar 

  24. Bazan, N. G. and Lukiw, W. J. 2002. COX-2 and presenilin-1 gene expression induced by interleukin-1 beta and amyloid beta 42 peptide is potentiated by hypoxia in primary human neural cells. J. Biol. Chem. 277:30359–67.

    PubMed  Google Scholar 

  25. Rossier, M., Zarski, R., Bohl, J., and Ohm, T. G. 2002. Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer's disease. Acta Neuropathol. (Berl) 103:363–369.

    Google Scholar 

  26. Fu, L., Abu-Khali, I. A., Morrison, R. S., Geschwind, D. H., and Kornblum, H. I. 2003. Expression patterns of epidermal growth factor receptor and fibroblast growth factor receptor 1 mRNA in fetal human brain. J. Comp. Neurol. 462:265–73.

    PubMed  Google Scholar 

  27. Takahashi, Y. 1992. Gene expression in cells of the central nervous system. Prog. Neurobiol. 38:523–569.

    PubMed  Google Scholar 

  28. Bernaudin, M., Nouvelot, A., MacKenzie, E. T., and Petit, E. 1998. Selective neuronal vulnerability and specific glial reactions in hippocampal and neocortical organotypic cultures submitted to ischemia. Exp. Neurol. 150:30–39.

    PubMed  Google Scholar 

  29. Wheal, H. V., Chen, Y., Mitchell, J., Schachner, M., Maerz, W., Wieland, H., Van Ressum, D., and Kirseh, J. 1998. Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity. Prog. Neurobiol. 55:611–640.

    PubMed  Google Scholar 

  30. Kingsbury, A. E., Foster, O. J., Nisbet, A. P., Cairns, N., Bray, L., Eve, D. J., Lees, A. J., and Marsden, C. D. 1995. Tissue pH as an indicator of mRNA preservation in human post-mortem brain. Mol. Brain Res. 28:311–318.

    PubMed  Google Scholar 

  31. Ross, J. 1996. Control of messenger RNA stability in higher eukaryotes. Trends Genet. 5:171–175.

    Google Scholar 

  32. Guhaniyogi, J. and Brewer, G. 2001. Regulation of mRNA stability in mammalian cells. Gene 265:11–23.

    PubMed  Google Scholar 

  33. Liu, L. X., Lu, H., Luo, Y., Date, T., Belanger, A. J., Vincent, K. A., Akita, G. Y., Goldberg, M., Cheng, S. H., Gregory, R. J., and Jiang, C. 2002. Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. 291:908–914.

    PubMed  Google Scholar 

  34. Thomas, E. A., Alvarez, C. E., and Sutcliffe, J. G. 2000. Evolutionarily distinct classes of S27 ribosomal proteins with differential mRNA expression in rat hypothalamus. J. Neurochem. 74:2259–2267.

    PubMed  Google Scholar 

  35. Sutcliffe, J. G. 2001. Open-system approaches to gene expression in the CNS. J. Neurosci. 21:8306–8309.

    PubMed  Google Scholar 

  36. Venter, J. C., Adams, M. D., and Meyers, E. W., et al. 2001. The sequence of the human genome. Science 291:1304–51.

    PubMed  Google Scholar 

  37. Ho, L., Pieroni, C., Winger, D., Purohit, D. P., Aisen, P. S., and Pasinetti, G. M. 1999. Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer's disease. J. Neurosci. Res. 57:295–303.

    PubMed  Google Scholar 

  38. Kitamura, Y., Shimohama, S., Koike, H., Kakimura, J., Matsuoka, Y., Nomura, Y., Gobieke-Haerter, P. J., and Taniguchi, T. 1999. Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer's disease brains. Biochem. Biophys. Res. Commun. 254:582–586.

    PubMed  Google Scholar 

  39. Mrak, R. E. and Griffin, W. S. 2000. Interleukin-1 and the immunogenetics of Alzheimer disease. J. Neuropathol. Exp. Neurol. 59:471–476.

    PubMed  Google Scholar 

  40. Franceschi, C., Valensin, S., Lescal, F., Olivieri, F., Licastro, F., Grimaldi, L. M., Monti, D., De Benedictis, G., and Bonafe, M. 2001. Neuroinflammation and the genetics of Alzheimer's disease: the search for a proinflammatory phenotype. Aging 13:163–170.

    PubMed  Google Scholar 

  41. Sayre, L. M., Smith, M. A., and Perry, G. 2001. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 8:721–738.

    PubMed  Google Scholar 

  42. Rogers, J. 1995. Inflammation as a pathogenic mechanism in Alzheimer's disease. Arzneimittelforschung 45:439–442.

    PubMed  Google Scholar 

  43. Tol, J., Roks, G., Slooter, A. J., and van Duijn, C. M. 1999. Genetic and environmental factors in Alzheimer's disease. Rev. Neurol. 155:10–16.

    Google Scholar 

  44. Rogan, S. and Lippa, C. F. 2002. Alzheimer's disease and other dementias: a review. American Journal of Alzheimer's Disease and Other Dementias 17:11–17.

    PubMed  Google Scholar 

  45. Bazan, N. G., Colangelo, V., and Lukiw, W. J. 2002. Prostaglandins and other lipid mediators in Alzheimer's disease. Prostaglandins Other Lipid Mediat. 68-;69:197–210.

    PubMed  Google Scholar 

  46. Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., Hardy, M., Gimenez, J. M., Chiang, N., Serhan, C. N., and Bazan N. G. 2003. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817.

    PubMed  Google Scholar 

  47. Yang, X., Khosravi-Far, R., Chang, H. Y., and Baltimore, D. 1997. DAXX, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89:1067–1076.

    PubMed  Google Scholar 

  48. Martin, L. J. 2001. Neuronal cell death in nervous system development, disease, and injury. Int. J. Mol. Med. 7:455–478.

    PubMed  Google Scholar 

  49. Christians, E. S., Yan, L. J., and Benjamin, I. J. 2002. Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit. Care Med. 30 (1 Suppl):S43–50.

    Google Scholar 

  50. Dou, F., Netzer, W. J., Tanemura, K., Li, F., Hartl, F. U., Takashima, A., Gouras, G. K., Greengard, P., and Xu, H. 2003. Chaperones increase association of tau protein with microtubules. Proc. Natl. Acad. Sci. USA 100:721–726.

    PubMed  Google Scholar 

  51. Kalaria, R. N., Cohen, D. L., Premkumar, D. R., Nag, S., LaManna, J. C., and Lust, W. D. 1998. Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res. Mol. Brain Res. 62:101–5.

    PubMed  Google Scholar 

  52. Vagnucci, A. H. Jr., and Li, W. W. 2003. Alzheimer's disease and anglogenesis. Lancet 361:605–608.

    PubMed  Google Scholar 

  53. Wang, Y., Cui, H., Schroering, A., Ding, J. L., Lane, W. S., McGill, G., Fisher, D. E., and Ding, H. F. 2002. NF-kappa B p100 is a pro-apoptotic protein with anti-oncogenic function. Nat. Cell Biol. 4:888–893.

    PubMed  Google Scholar 

  54. Price, D. L., Tanzi, R. E., Borchelt, D. R., and Sisodia, S. S. 1998. Alzheimer's disease: genetic studies and transgenic models. Ann. Rev. Genet. 32:461–493.

    PubMed  Google Scholar 

  55. Ge, Y. W., and Lahiri, D. K. 2002. Regulation of promoter activity of the APP gene by cytokines and growth factors: implications in Alzheimer's disease. Ann. N. Y. Acad. Sci. 973:463–467.

    PubMed  Google Scholar 

  56. Lahiri, D. K., Chen, D., Vivien, D., Ge, Y. W., Greig, N. H., and Rogers, J. T. 2003. Role of cytokines in the gene expression of amyloid beta-protein precursor: identification of a 5′-UTR-binding nuclear factor and its implications in Alzheimer's disease. J. Alzheimer's Dis. 5:81–90.

    Google Scholar 

  57. Kaltschmidt, B., Linker, R. A., Deng, J., and Kaltschmidt, C. 2002. Cyclooxygenase-2 is a neuronal target gene of NF-kappaB. BMC Mol. Biol. 3:1–12.

    PubMed  Google Scholar 

  58. Mattson, M. P., Culmsee, C., Yu, Z., and Camandola, S. 2000. Roles of nuclear factor kappaB in neuronal survival and plasticity. J. Neurochem. 74:443–456.

    PubMed  Google Scholar 

  59. Gewurz, H., Zhang, X. H., and Lint, T. F. 1995. Structure and function of the pentraxins. Curr. Opin. Immunol. 7:54–64.

    PubMed  Google Scholar 

  60. Salazar, A., Pinto, X., and Mana, J. 2001. Serum amyloid A and high-density lipoprotein cholesterol: serum markers of inflammation in sarcoidosis and other systemic disorders. Eur. J. Clin Invest. 31:1070–1077.

    PubMed  Google Scholar 

  61. de la Torre, J. C. 2002. Vascular basis of Alzheimer's pathogenesis. Ann. NY Acad. Sci. 977:196–215.

    PubMed  Google Scholar 

  62. Hromas, R., Gray, P. W., Chantry, D., Godiska, R., Krathwohl, M., Fife, K., Bell, G. I., Takeda, J., Aronica, S., Gordon, M., Cooper, S., Broxmeyer, H. E., and Klemaz, M. J. 1997. Cloning and characterization of exodus, a novel beta-chemokine. Blood 89:3315–3322.

    PubMed  Google Scholar 

  63. Lukiw, W. J., Rogaev, E. I., and Bazan, N. G. 2001. Potential of transcriptional coordination of nine genes associated with Alzheimer's disease. Alzheimer's Reports 3:233–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Lukiw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukiw, W.J. Gene Expression Profiling in Fetal, Aged, and Alzheimer Hippocampus: A Continuum of Stress-Related Signaling. Neurochem Res 29, 1287–1297 (2004). https://doi.org/10.1023/B:NERE.0000023615.89699.63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000023615.89699.63

Navigation