Skip to main content
Log in

Structure-Related Oxidative Damage in Rat Brain After Acute and Chronic Electroshock

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The role of oxidative stress in electroconvulsive therapy–related effects is not well studied. The purpose of this study was to determine oxidative stress parameters in several brain structures after a single electroconvulsive seizure or multiple electroconvulsive seizures. Rats were given either a single electroconvulsive shock or a series of eight electroconvulsive shocks. Brain regions were isolated, and levels of oxidative stress in the brain tissue (cortex, hippocampus, striatum and cerebellum) were measured. We demonstrated a decrease in lipid peroxidation and protein carbonyls in the hippocampus, cerebellum, and striatum several times after a single electroconvulsive shock or multiple electroconvulsive shocks. In contrast, lipid peroxidation increases both after a single electroconvulsive shock or multiple electroconvulsive shocks in cortex. In conclusion, we demonstrate an increase in oxidative damage in cortex, in contrast to a reduction of oxidative damage in hippocampus, striatum, and cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. American Psychiatric Association. 1990. The Practice of ECT: Recommendations for Treatment, Training and Privileging, Task Force Report on ECT, American Psychiatric Press, Washington, DC.

    Google Scholar 

  2. Abrams, R. Electroconvulsive Therapy. Oxford University Press, Oxford, 1988.

    Google Scholar 

  3. Lerer, B. and Shapira, B. 1996. The cognitive side effects of electroconvulsive therapy. Ann. N. Y. Acad. Sci. 462:366–375.

    Google Scholar 

  4. Fink, M. Convulsive Therapy: Theory and Practice, Raven Press, New York, 1979.

    Google Scholar 

  5. Fink, M. and Nemeroff, A. 1989. A neuroendocrine view of ECT. Convulsive Therapy 5:296–304.

    Google Scholar 

  6. Herman, J. P., Schafer, K. H., Sladek, C. D., Day, R., Young, E. A., Akil, H., and Watson, S. J. 1989. Chronic electro-convulsive shock treatment elicits up-regulation of CRF and AVP mRNA in select population of neuroendocrine neurons. Brain Res. 501:235–246.

    Google Scholar 

  7. Madsen, M. T., Treschow, A., Bengzon, J., Bolwig, T. G., Lindvall, O., and Tingstrom, A. 2000. Increased neurogenesis in a model of electroconvulsive therapy. Soc. Biol. Psychiatry 47:1043–1049.

    Google Scholar 

  8. Rosen, Y., Reznik, I., Sluvis, A., Kaplan, D., and Mester, R. 2003. The significance of the nitric oxide in electro-convulsive therapy: a proposed neurophysiological mechanism. Medical Hypotheses 60:424–429.

    Google Scholar 

  9. The UK ECT Review Group. 2003. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet 361:799–808.

    Google Scholar 

  10. Janicak, P. G., Davis, J. M., and Gibbons, R. D. 1995. Efficacy of ECT: a meta-analysis. Am. J. Psychiatry 142:297–302.

    Google Scholar 

  11. Devanand, D. P., Dwork, A. J., Hutchinson, E. R., Bolwig, T. G., and Sackeim, H. A. 1994. Does ECT alter brain structure? Am. J. Psychiatry 151:957–970.

    Google Scholar 

  12. Newman, M. E., Gur, E., Shapira, B., and Lerer, B. 1998. Neurochemical mechanism of action of ECS: evidence from in vivo studies. J. Electroconvulsive Therapy 14:153–171.

    Google Scholar 

  13. Zachrisson, O. C., Balldin, J., Ekman, R., Naesh, O., Rosengren, L., Agren, H., and Blennow, K. 2000. No evident neuronal damage after electroconvulsive therapy. Psychiatry Res. 96:157–65.

    Google Scholar 

  14. Dwork, A. J., Arango, V., Underwood, M., Ilievski, B., Rosoklija, G., Sackeim, H. A., and Lisanby, S. H. 2004. Absence of histological lesions in primate models of ECT and magnetic seizure therapy. Am. J. Psychiatry 161:576–578.

    Google Scholar 

  15. Dal-Pizzol, F., Klamt, F., Frota, M. R. C., Andrades, M. E., Caregnato, F. F., Vianna, M., Schroder, N., Quevedo, J., Izquierdo, I., and Archer, T. 2001. Neonatal iron exposure induces oxidative stress in adult Wistar rat. Dev. Brain Res. 130:109–114.

    Google Scholar 

  16. Dal-Pizzol, F., Klamt, F., Vianna, M., Schroder, N., Quevedo, J., Benfato, M. S., Moreira, J. C., and Walz, R. (dy2000). Lipid peroxidation in hippocampus early and late after status epileticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci. Lett. 291:179–182.

    Google Scholar 

  17. Klamt, F., Dal-Pizzol, F., Frota, M. L. C., Walz, R., Andrades, M. E., Silva, E. G., Brentani, R., Izquierdo, I., and Moreira, J. C. F. 2001. Imbalance of antioxidant defence in mice lacking cellular prion protein. Free Radic. Biol. Med. 30:1137–1144.

    Google Scholar 

  18. Erakovic, V., Zupam, G., Varljen, J., Radosevic, S., and Simonic, A. 2000. Electroconvulsive shock in rats: changes in superoxide dismutase and glutathione peroxidase activity. Mol. Brain Res. 76:266–274.

    Google Scholar 

  19. Draper, H. H. and Hadley, M. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 186:421–431.

    Google Scholar 

  20. Levine, R. L., Garland, D., and Oliver, C. N. 1990 Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186:464–478.

    Google Scholar 

  21. Lowry, O. H., Rosebrough, A. L., and Randal, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  22. Ishihara, K. and Sasa, M. 1999. Mechanism underlying the therapeutic effects of ECT on depression. Jpn. J. Pharmacol. 80:185–189.

    Google Scholar 

  23. Ben-Ari, Y. 1995. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 12:375–403.

    Google Scholar 

  24. Shulz, J. N., Henshaw, D. R., Siwek, E., Jenkins, B. G., Ferrante, R. J., Cipolloni, P. B., Kowall, N. W., Rosen, B. R., and Beal, M. F. 1995. Involvement of free radicals in excitotoxicity in vivo. J. Neurochem. 64:2239–2247.

    Google Scholar 

  25. Ueda, Y., Yokoyama, H., Niwa, R., Konaka, R., Ohya-Nishiguchi, H., and Kamada, H. 1997. Generation of lipid radicals in hippocampal extracellular space during kainic acid-induced seizures in rat. Epilepsy Res. 26:329–333.

    Google Scholar 

  26. Scorza, F. A., Sanabria, E. R., Calderazzo, L., and Cavalheiro, E. 1998. Glucose utilization during interictal intervals in an epilepsy model induced by pilocarpine: a qualitative study. Epilepsia 39:1041–1045.

    Google Scholar 

  27. Awata, S., Konno, M., Kawashima, R., Suzuki, K., Sato, T., Matsuoka, H., Fukuda, H., and Sato, M. 2002. Changes in regional cerebral blood flow abnormalities in late-life depression following response to electroconvulsive therapy. Psychiatry Clin. Neurosci. 56:31–40.

    Google Scholar 

  28. Conca, A., Prapotnik, M., Peschina, W., and Konig, P. 2003. Simultaneous pattern of rCBF and rCMRGlu in continuation ECT: case reports. Psychiatry Res. 124:191–198.

    Google Scholar 

  29. Fabbri, F., Henry, M. E., Renshaw, P. F., Nadgir, S., Ehrenberg, B. L., Franceschini, S., and Fantini, S. 2003. Bilateral near-infrared monitoring of the cerebral concentration and oxygen-saturation of hemoglobin during right unilateral electro-convulsive therapy. Brain Res. 992:193–204.

    Google Scholar 

  30. Mervaala, E., Kononen, M., Fohr, J., Husso-Saastamoinen, M., Valkonen-Korhonen, M., Kuikka, J. T., Viinamaki, H., Tammi, A. K., Tiihonen, J., Partanen, J., Lehtonen, J. 2001. SPECT and neuropsychological performance in severe depression treated with ECT. J. Affect. Disord. 66:47–58.

    Google Scholar 

  31. Vangu, M. D., Esser, J. D., Boyd, I. H., and Berk, M. 2003. Effects of electroconvulsive therapy on regional cerebral blood flow measured by 99mtechnetium HMPAO SPECT. Prog. Neuropsychopharmacol. Biol. Psychiatry 27:15–19.

    Google Scholar 

  32. Volkow, N. D., Bellar, S., Mullani, N., Jould, L., and Dewey, S. 1988. Effects of Electroconvulsive Therapy on Brain Glucose Metabolism: A Preliminary Study. Convuls. Ther. 4:199–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barichello, T., Bonatto, F., Agostinho, F.R. et al. Structure-Related Oxidative Damage in Rat Brain After Acute and Chronic Electroshock. Neurochem Res 29, 1749–1753 (2004). https://doi.org/10.1023/B:NERE.0000035811.06277.b3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000035811.06277.b3

Navigation