Skip to main content
Log in

Harmaline-induced climbing fiber activation causes amino acid and peptide release in the rodent cerebellar cortex and a unique temporal pattern of Fos expression in the olivo-cerebellar pathway

  • Published:
Journal of Neurocytology

Abstract

Cerebellar climbing fibers have a unique relationship with the dendritic tree of cerebellar Purkinje cells and have been proposed as a key input in establishing long-term plastic changes in the cerebellar cortex. Although both glutamate and aspartate and a number of neuropeptides have been implicated as climbing fiber-released neurotransmitters/neuromodulators, the in vivo release of these substances during climbing fiber stimulation remains to be demonstrated. In the present study, climbing fibers were activated with harmaline and rats or mice were implanted with a microdialysis probe or a microperfusion probe, respectively, to measure amino acid or peptide release. Additional rats were euthanized at various timepoints post-harmaline injection and Fos immunocytochemistry was used to visualize the activation pattern of the inferior olive, cerebellar cortex and deep nuclei over time. Fos expression was first detected in the inferior olive at 15 min post-harmaline injection followed by expression in the deep cerebellar nuclei (30 min) and then in the cerebellar cortex (1 h). Between 2 and 6 h Purkinje cells expressing Fos were found in variable numbers in both the vermal and paravermal regions and there was a distinct parasagittal-banding pattern in the vermal region. Of several amino acids measured following harmaline administration only glutamate and aspartate levels increased significantly in the first dialysate sample compared to preharmaline levels and their release was blocked by prior lesion of the inferior olive. Citrulline also increased following climbing fiber stimulation, but this occurred in the second and third dialysate samples and may reflect nitric oxide production. Four peptides were examined in cerebellar microperfusates following climbing fiber stimulation. Only corticotropin releasing factor (CRF), calcitonin gene related peptide (CGRP) and bradykinin were significantly increased compared to pre-harmaline levels. These results suggest that glutamate, aspartate, CRF and CGRP are released from climbing fibers during activation of the olivocerebellar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AKGOREN, N., MATHIESEN, C., RUBIN, I. & LAURITZEN, M. (1997) Laminar analysis of activity-dependent increases in CBF in rat cerebellar cortex: Dependence on synaptic strength. American Journal of Physiology 273, H1166-H1176.

    Google Scholar 

  • AHMADI, S., MUTH-SELBACH, U., LAUTERBACH, A., LIPFERT, P., NEUHUBER, W. L. & ZEILHOFER, H. U. (2003) Facilitation of spinal NMDA receptor currents by spillover of synaptically released glycine. Science 300, 2094-2097.

    Google Scholar 

  • BARDIN, J. M., BATINI, C., BILLARD, J. M., BUISSERET-DELMAS, C., CONRATH-VERRIER, M. & CORVAJA, N. (1983) Cerebellar output regulation by climbing and mossy fibers with and without the inferior olive. Journal of Comparative Neurology 213, 464-477.

    Google Scholar 

  • BATINI, C., BUISSERET-DELMAS, C. & CONRATH-VERRIER, M. (1981) Harmaline-induced tremor I. Regional metabolic activity as revealed by [14C]2-deoxyglucose in cat. Experimental Brain Research 42, 371-382.

    Google Scholar 

  • BEAN, A. J., DURING, M. J. & ROTH, R. H. (1989) Stimulation-induced release of coexistent transmitters in the prefrontal cortex: An in vivo microdialysis study of dopamine and neurotensin release. Journal of Neurochemistry 53, 655-657.

    Google Scholar 

  • BEITZ, A. J. & CHAN-PALAY, V. (1979) A Golgi analysis of neuronal organization in the medial cerebellar nucleus of the rat. Neuroscience 4, 47-63.

    Google Scholar 

  • BERNARD, F. F., BUISSERET-DELMAS, C., COMPOINT, C. & LAPLANTE, S. (1984) Harmaline induced tremor III. A combined simple units, HRP, and 2-deoxyglucose study of the olivocerebellar system in the rat. Experimental Brain Research 57, 128-137.

    Google Scholar 

  • BENVENISTE, H., DREJER, J., SCHOUSBOE, A. & DIEMER, N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. Journal of Neurochemistry 43, 1369-1374.

    Google Scholar 

  • BISHOP, G. A. (1990) Neuromodulatory effects of corticotropin releasing factor on cerebellar Purkinje cells: An in vivo study in the cat. Neuroscience 39, 251-257.

    Google Scholar 

  • BISHOP, G. A. (1995) Calcitonin gene-related peptide modulates neuronal activity in the mammalian cerebellar cortex. Neuropeptides 28, 85-97.

    Google Scholar 

  • BISHOP, G.A. & KING, J. S. (1992) Differential modulation of Purkinje cell activity by enkephalin and corticotropin releasing factor. Neuropeptides 22, 167-174.

    Google Scholar 

  • BORDEY, A. & SONTHEIMER, H. (2003) Modulation of glutamatergic transmission by bergmann glial cells in rat cerebellum in situ. Journal of Neurophysiology 89, 979-988.

    Google Scholar 

  • BORN, W., FISCHER, J. A. & MUFF, R. (2002) Receptors for calcitonin gene-related peptide, adrenomedullin, and amylin: The contributions of novel receptor-activity-modifying proteins. Receptors Channels 8, 201-209.

    Google Scholar 

  • BURMEISTER, J. J., POMERLEAU, F., PALMER, M., DAY, B. K., HUETTL, P. & GERHARDT, G. A. (2002) Improved ceramic-based multisite microelectrode for rapid measurements of L-glutamate in the CNS. Journal of Neuroscience Methods 119, 163-171.

    Google Scholar 

  • CASTRO-ALAMANCOS, M. A., AREVALO, M. A. & TORRES-ALEMAN, I. (1996) Involvement of protein kinase C and nitric oxide in the modulation by insulin-like growth factor-I of glutamate-induced GABA release in the cerebellum. Neuroscience 70, 843-847.

    Google Scholar 

  • CASTRO-ALAMANCOS, M. A. & TORRES-ALEMAN, I. (1993) Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proceedings of the National Academy of Sciences of the USA 90, 7386-7390.

    Google Scholar 

  • CASTRO-ALAMANCOS, M. A. & TORRES-ALEMAN, I. (1994) Learning of the conditioned eye-blink response is impaired by an antisense insulin-like growth factor I oligonucleotide. Proceedings of the National Academy of Sciences of the USA 91, 10203-10207.

    Google Scholar 

  • CHAUHAN, M., THOTA, C. S., KONDAPAKA, S., WIMALAWANSA, S. & YALLAMPALLI, C. (2003) Evidence for the existence of a new receptor for CGRP, which is not CRLR. Peptides 24, 65-71.

    Google Scholar 

  • CHEN, E. Y., EMERICH, D. F., BARTUS, R. T. & KORDOWER, J. H. (2000) B2 bradykinin receptor immunoreactivity in rat brain. Journal of Comparative Neurology 427, 1-18.

    Google Scholar 

  • CHEN, Y. & ROSAZZA, J. P. (1996) Oligopeptides as substrates and inhibitors for a new constitutive nitric oxide synthase from rat cerebellum. Biochemical and Biophysical Research Communications 224, 303-308.

    Google Scholar 

  • CHINENOV, Y., KERPPOLA, T. K. (2001) Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 20, 2438-2452.

    Google Scholar 

  • CLEMENTS, J. R., MONAGHAN, P. L. & BEITZ, A. J. (1988) An ultrastructural description of glutamate-like immunoreactivity in the cerebellar cortex of the rat. Brain Research 421, 343-348.

    Google Scholar 

  • CLEMENTS, J. R., MAGNUSSON, K. R. & BEITZ, A. J. (1990) Ultrastructural description of glutamate, aspartate, taurine and glycine-like immunoreactive terminals from five rat brain regions. Journal of Electron Microscopy Technique 15, 49-63.

    Google Scholar 

  • COUTURE, R., HARRISSON, M., VIANNA, R. M. & CLOUTIER, F. (2001) Kinin receptors in pain and inflammation. European Journal of Pharmacology 429, 161-176.

    Google Scholar 

  • COZZI, M. G., ROSA, P., GRECO, A., HILLE, A., HUTTNER, W. B., ZANINI, A. & DE CAMILLI, P. (1989) Immunohistochemical localization of secretogranin II in the rat cerebellum. Neuroscience 28, 423-441.

    Google Scholar 

  • CUMMINGS, S. & KING, J. S. (1990) Coexistence of corticotropin releasing factor and enkephalin in cerebellar afferent systems. Synapse 5, 167-167.

    Google Scholar 

  • CURRAN, T. & MORGAN, J. I. (1995) Fos: An immediate-early transcription factor in neurons. Journal of Neurobiology 26, 403-412.

    Google Scholar 

  • CURRAS, M.C. & DINGLEDINE, R. (1992) Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors. Molecular Pharmacology 41, 520-526.

    Google Scholar 

  • DAVIES, J. A., ANNELS, S. J., DICKIE, B. G., ELLIS, Y. & KNOTT, N. J. (1995) A comparison between the stimulated and paroxysmal release of endogenous amino acids from rat cerebellar, striatal and hippocampal slices: A manifestation of spreading depression? Journal of the Neurological Sciences 131, 8-14.

    Google Scholar 

  • DEL ARCO, A., SEGOVIA, G., FUXE, K. & MORA, F. (2003) Changes in dialysate concentrations of glutamate and GABA in the brain: An index of volume transmission mediated actions? Journal of Neurochemistry 85, 23-33.

    Google Scholar 

  • DELGADO, J. M. R., LERMA, J., MARTIN DEL RIO, R. & SOLIS, J. M. (1984) Dialytrode technology and local profiles of amino acids in the awake cat brain. Journal of Neurochemistry 42, 1218-1228.

    Google Scholar 

  • DE MONTIGNY, C. & LAMARRE, Y. (1973) Rythmic activity induced by harmaline in the olivo-cerebellar-bulbar system of the cat. Brain Research 53, 81-95.

    Google Scholar 

  • DI CHIARA, G. (1990) In-vivo brain dialysis of neurotransmitters. Trends in Pharmacological Sciences 11, 116-121.

    Google Scholar 

  • DICKIE, B. G. & DAVIES, J. A. (1993) Modulation of calcium-dependent and-independent components of veratridine-evoked release of glutamate from rat cerebellum. Brain Research 619, 247-254.

    Google Scholar 

  • DRAGUNOW, M. (1995) Differential expression of immediate-early genes during synaptic plasticity, seizures and brain injury suggests specific functions for these molecules in brain neurons. In Immediate-Early Genes in the Central Nervous System (edited by TOLLE, T. R., SCHADRACK, J., ZIEGLGANSBERGER, W.) pp. 35-50. New York, NY: Springer.

    Google Scholar 

  • DRAGUNOW, M. & FAULL, R. (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. Journal of Neuroscience Methods 29, 261-265.

    Google Scholar 

  • EDVINSSON, L. (2001) Aspects on the pathophysiology of migraine and cluster headache. Pharmacology & Toxicology 89, 65-73.

    Google Scholar 

  • FAY, R. & KUBIN, L. (2000) Pontomedullary distribution of 5-HT2A receptor-like protein in the rat. Journal of Comparative Neurology 418, 323-345.

    Google Scholar 

  • FEDELE, E., ANSALDO, M. A., VARNIER, G. & RAITERI, M. (2000) Benzodiazepine-sensitive GABA(A) receptors limit the activity of the NMDA/NO/cyclic GMP pathway: A microdialysis study in the cerebellum of freely moving rats. Journal of Neurochemistry 75, 782-787.

    Google Scholar 

  • FONNUM, F. (1984) Glutamate: A transmitter in mammalian brain. Journal of Neurochemistry 42, 1-11.

    Google Scholar 

  • FURUYA, S., TABATA, T., MITOMA, J., YAMADA, K., YAMASAKI, M., MAKINO, A., YAMAMOTO, T., WATANABE, M., KANO, M. & HIRABAYASHI, Y. (2000) L-serine and glycine serve as major astrogliaderived trophic factors for cerebellar Purkinje neurons. Proceedings of the National Academy of Science USA 97, 11528-11533.

    Google Scholar 

  • GADDUM, J. H. (1961) Push-pull cannulae. Journal of Physiology (London) 155, 1P-2P.

    Google Scholar 

  • GREGG, K. V., BISHOP, G. A. & KING, J. S. (1999) Fine structural analysis of calcitonin gene-related peptide in the mouse inferior olivary complex. Journal of Neurocytology 28, 431-438.

    Google Scholar 

  • HELD, B., POCOCK, J. M. & PEARSON, H. A. (1998) Endothelin-1 inhibits voltage-sensitive Ca2+ channels in cultured rat cerebellar granule neurones via the ET-A receptor. Pflugers Archives 436, 766-775.

    Google Scholar 

  • HERDEGEN, T. (1996) Jun, Fos, and CREB/ATF transcription factors in the brain: Control of gene expression under normal and pathophysiological conditions. Neuroscientist 2, 153-161.

    Google Scholar 

  • HERDEGEN, T. & WAETZIG, V. (2001) AP-1 proteins in the adult brain: Facts and fiction about effectors of neuroprotection and neurodegeneration. Oncogene 20, 2424-2437.

    Google Scholar 

  • HONG, K. W., KIM, C, D., RHIM, B. Y. & LEE, W. S. (1999) Effect of omega-conotoxin GVIA and omega-agatoxin IVA on the capsaicin-sensitive calcitonin gene-related peptide release and autoregulatory vasodilation in rat pial arteries. Journal of Cerebral Blood Flow and Metabolism 19, 53-60.

    Google Scholar 

  • HUNT, S. P., MCNAUGHTON, L. A., JENKINS, R. & WISDEN, W. (1995) Immediate-early gene activation as a window on mechanism in the nervous system. In Immediate-Early Genes in the Central Nervous System (edited by TOLLE, T. R., SCHADRACK, J. & ZIEGLGANSBERGER, W.) pp. 18-34. Springer-Verlag.

  • GAO, W., DUNBAR, R. L., CHEN, G., REINERT, K. C., OBERDICK, J. & EBNER, T. J. (2003) Optical imaging of long-term depression in the mouse cerebellar cortex in vivo. Journal of Neuroscience 23, 1859-1866.

    Google Scholar 

  • GRELLA, B., DUKAT, M., YOUNG, R., TEITLER, M., HERRICK-DAVIS, K., GAUTHIER, C. B. & GLENNON, R. A. (1998) Investigation of hallucinogenic and related beta-carbolines. Drug and Alcohol Dependence 50, 99-107.

    Google Scholar 

  • HA, B. K., BISHOP, G. A., KING, J. S. & BURRY, R. W. (2000) Corticotropin releasing factor induces proliferation of cerebellar astrocytes. Journal of Neuroscience Research 62, 789-798.

    Google Scholar 

  • HEALY, D. P. & ORLOWSKI, M. (1992) Immunocytochemical localization of endopeptidase 24.15 in rat brain. Brain Research 571, 121-128.

    Google Scholar 

  • HERDEGEN, T. (1996) Jun, Fos, and CREB/ATF transcription factors in the brain: Control of gene expression under normal and pathophysiological conditions. Neuroscientist. 2, 153-161.

    Google Scholar 

  • HERDEGEN, T. & WAETZIG, V. (2001) AP-1 proteins in the adult brain: Facts and fiction about effectors of neuroprotection and neurodegeneration. Oncogene 20, 2424-2437.

    Google Scholar 

  • HERMENEGILDO, C., MONFORT, P. & FELIPO, V. (2000) Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication: Characterization by in vivo brain microdialysis. Hepatology 31, 709-715.

    Google Scholar 

  • HERNANDEZ-VIADEL, M., MONTOLIU, C., MONFORT, P., CANALES, J. J., ERCEG, S., ROWAN, M., CECCATELLI, S. & FELIPO, V. (2003) Chronic exposure to 2,5-hexanedione impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in rat brain in vivo. Neurochemistry International 42, 525-533.

    Google Scholar 

  • ITO, M. (1984) The Cerebellum and Motor Control. New York: Raven Press.

    Google Scholar 

  • ITO, M. (2001) Cerebellar long term depression: Characterization, signal transduction and functional roles. Physiology Reviews 81, 1143-1195.

    Google Scholar 

  • JEFTINIJA, S. D., JEFTINIJA, K. V., STEFANOVIC, G. & LIU, F. (1996) Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. Journal of Neurochemistry 66, 676-684.

    Google Scholar 

  • JIMENEZ-DIAZ, L., GRUART, A., MINANO, F. J. & DELGADO-GARCIA, J. M. (2002) An experimental study of posterior interpositus involvement in the genesis and control of conditioned eyelid responses. Annals of the New York Academy of Science 978, 106-118.

    Google Scholar 

  • JOHNSON, J. L. (1972) Glutamic acid as a synaptic transmitter in the nervous system. A review. Brain Research 37, 1-19.

    Google Scholar 

  • KAKIZAWA, S., YAMADA, K., IINO, M., WATANABE, M. & KANO, M. (2003) Effects of insulin-like growth factor I on climbing fibre synapse elimination during cerebellar development. European Journal of Neuroscience 17, 545-554.

    Google Scholar 

  • KANAI, Y., BHIDE, P. G., DIFIGLIA, M. & HEDIGER, M. A. (1995) Neuronal high-affinity glutamate transport in the rat central nervous system. Neuroreport 6, 2357-2362.

    Google Scholar 

  • KAPLAN, A. P., JOSEPH, K., SHIBAYAMA, Y., NAKAZAWA, Y., GHEBREHIWET, B., REDDIGARI, S. & SILVERBERG, M. (1998) Bradykinin formation. Plasma and tissue pathways and cellular interactions. Clinical Reviews in Allergy Immunology 16, 403-429.

    Google Scholar 

  • KAUFMAN, G. D., SHINDER, M. E. & PERACHIO, A. A. (1999) Correlation of Fos expression and circling asymmetry during gerbil vestibular compensation. Brain Research 817, 246-255.

    Google Scholar 

  • KAUFMAN, G. D. & PERACHIO, A. A. (2000) Immediate early gene expression in the vestibular system, In Neurochemistry of the Vestibular System (edited by BEITZ, A. J., ANDERSON, J. H.) pp. 365-377. Boca Raton, FL, CRC Press.

    Google Scholar 

  • KHAN, G. M., SMOLDERS, I., LINDEKENS, H., MANIL, J., EBINGER, G. & MICHOTTE, Y. (1999) Effects of diazepam on extracellular brain neurotransmitters in pilocarpine-induced seizures in rats. European Journal of Pharmacology 373, 153-161.

    Google Scholar 

  • KIMURA, H., OKAMOTO, K. & SAKAI, Y. (1985) Pharmacological evidence for L-aspartate as the neurotransmitter of cerebellar climbing fibres in the guinea-pig. Journal of Physiology 365, 103-119.

    Google Scholar 

  • KING, J. S., MADTES, P. JR., BISHOP, G. A. & OVERBECK, T. L. (1997) The distribution of corticotropin-releasing factor (CRF), CRF binding sites and CRF1 receptor mRNA in the mouse cerebellum. Progress in Brain Research 114, 55-66.

    Google Scholar 

  • LAMARRE, Y., DE MONTIGNY, C., DUMONT, M. & WEISS, M. (1971) Harmaline induced rhythmic activity of cerebellar and lower brain stem neurons. Brain Research 32, 246-250.

    Google Scholar 

  • LANG, E. J., SUGIHARA, I. & LLINAS, R. (1996) GABAergic modulation of complex spike activity by the cerebellar nucleo-olivary pathway in rats. Journal of Neurophysiology 76, 255-275.

    Google Scholar 

  • LIN, W. W. & CHUANG, D. M. (1992) Regulation of bradykinin-induced phosphoinositide turnover in cultured cerebellar astrocytes: Possible role of protein kinase C. Neurochemistry International 21, 573-579.

    Google Scholar 

  • LLINAS, R. & SASAKI, K. (1989) The functional organization of the olivocerebellar system as examined by multiple Purkinje cell recordings. European Journal of Neuroscience 1, 587-602.

    Google Scholar 

  • LLINAS, R. & VOLKIND, R. A. (1973) The olivocerebellar system: Functional properties as revealed by harmaline-induced tremor. Experimental Brain Research 18, 69-87.

    Google Scholar 

  • LLINAS, R. & YAROM, Y. (1986) Oscillatory properties of guinea-pig inferior olivary neurons and their pharmacological modulation: An in vitro study. Journal of Physiology (London) 376, 163-182.

    Google Scholar 

  • LLINAS, R., BAKER, R. & SOTELO, C. (1974) Electronic coupling between neurons in cat inferior olive. Journal of Neurophysiology 37, 560-571.

    Google Scholar 

  • LORDEN, J. F., STRATTON, S. E., MAYS, L. E. & OLTMANS, G. A. (1988) Purkinje cell activity in rats following chronic treatment with harmaline. Neuroscience 27, 465-472.

    Google Scholar 

  • LUO, D., LEUNG, E. & VINCENT, S. R. (1994) Nitric oxide-dependent efflux of cGMP in rat cerebellar cortex: An in vivo microdialysis study. Journal of Neuroscience 14, 263-271.

    Google Scholar 

  • MADTES, P. C. JR & KING, J. S. (1994) Distribution of cholecystokinin binding sites in the North American opossum cerebellum. Journal of Chemical Neuroanatomy 7, 105-112.

    Google Scholar 

  • MARKUS, R. P., SANTOS, J. M., ZAGO, W. & RENO, L. A. (2003) Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3H]glutamate release in rat cerebellum slices. Journal of Pharmacology and Experimental Therapeutics 305, 525-530.

    Google Scholar 

  • MCKENZIE, J. C., JUAN, Y. W., THOMAS, C. R., BERMAN, N. E. & KLEIN, R. M. (2001) Atrial natriuretic peptide-like immunoreactivity in neurons and astrocytes of human cerebellum and inferior olivary complex. Journal of Histochemistry and Cytochemistry 49, 1453-1467.

    Google Scholar 

  • MIRANDA-CONTRERAS, L., BENITEZ-DIAZ, P. R., MENDOZA-BRICENO, R. V., DELGADO-SAEZ, M. C. & PALACIOS-PRU, E. L. (1999) Levels of amino acid neurotransmitters during mouse cerebellar neurogenesis and in histotypic cerebellar cultures. Developmental Neuroscience 21, 147-158.

    Google Scholar 

  • MIWA, H., NISHI, K., FUWA, T. & MIZUNO, Y. (2000) Differential expression of c-Fos following administration of two tremorogenic agents: Harmaline and oxotremorine. NeuroReport 11, 2385-2390.

    Google Scholar 

  • MIYATA, M., OKADA, D. HASHIMOTO, K., KANO, M. & ITO, M. (1999) Corticotropin-releasing factor plays a permissive role in cerebellar long-term depression. Neuron 22, 763-775.

    Google Scholar 

  • MOLLER, C., BING, O. & HEILIG, M. (1994) c-fos expression in the amygdala: In vivo antisense modulation and role in anxiety. Cell and Molecular Neurobiology 14, 415-423.

    Google Scholar 

  • MORARA, S., ROSINA, A. & PROVINI, L. (1992) CGRP as a marker of the climbing fibers during the development of the cerebellum in the rat. Annals of the New York Academy of Sciences 657, 461-463.

    Google Scholar 

  • MORARA, S., VAN DER WANT, J. J., DE WEERD, H., PROVINI, L. & ROSINA, A. (2001) Ultrastructural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience 108, 655-671.

    Google Scholar 

  • MUFF, R., BORN, W. & FISCHER, J. A. (1995) Calcitonin, calcitonin gene-related peptide, adrenomedullin and amylin: Homologous peptides, separate receptors and overlapping biological actions. European Journal of Endocrinology 133, 17-20.

    Google Scholar 

  • MULLER, T. & KETTENMAN, H. (1995) Physiology of Bergmann glial cells. International Reviews in Neurobiology 38, 341-359.

    Google Scholar 

  • NAKAKI, T. MISHIMA, A., SUZUKI, E., SHINTANI, F. & FUJII, T. (2000) Glufosinate ammonium stimulates nitric oxide production through N-methyl D-aspartate receptors in rat cerebellum. Neuroscience Letters 290, 209-212.

    Google Scholar 

  • NAKKI, R, SHARP, F. R. & SAGAR, S. M. (1996) Fos expression in the brainstem and cerebellum following phencyclidine and MK801. Journal of Neuroscience Research 43, 203-212.

    Google Scholar 

  • NUMAKAWA, T., TAKEI, N. & HATANAKA, H. (2000) BDNF rapidly induces aspartate release from cultured CNS neurons. Neuroscience Research 37, 59-65.

    Google Scholar 

  • O'HEARN, E. & MOLLIVER, M. E. (1997) The olivocerebellar projection mediates ibogaine-induced degeneration of Purkinje cells: A model of indirect trans-synaptic excitotoxicity. Journal of Neuroscience 17, 8828-8841.

    Google Scholar 

  • O'HEARN, E., LONG, D. B. & MOLLIVER, M. E. (1993) Ibogaine induces glial activation in parasagittal zones of the cerebellum. NeuroReport 4, 299-302.

    Google Scholar 

  • OLDENBEUVING, A. W., EISENMAN, L. M., DE ZEEUW, C. I. & RUIGROK, T. J. (1999) Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice. European Journal of Neuroscience 11, 3809-3822.

    Google Scholar 

  • OTIS, T. S., KAVANAUGH, M. P. & JAHR, C. E. (1997) Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science 277, 1515-1518.

    Google Scholar 

  • OTTERSEN, O. P., MADSEN, S., STORM-MATHISEN, J., SOMOGYI, P., SCOPSI, L. & LARSSON, L.-I. (1988) Immunocytochemical evidence suggests that taurine is colocalized with GABA in the Purkinje cell terminals, but that the stellate cell terminals predominantly contain GABA: A light and electron microscopic study of the rat cerebellum. Experimental Brain Research 72, 407-416.

    Google Scholar 

  • PALKOVITS, M., LERANTH, C., GORCS, T. & YOUNG, W. S. (1987) Corticotropin-releasing factor in the olivocerebellar tract of rats: Demonstration by light-and electron-microscopic immunohistochemistry and in situ hybridization histochemistry. Proceedings of the National Academy of Science USA 84, 3911-3915.

    Google Scholar 

  • PALAY, S. L. & CHAN-PALAY, V. (1974) Cerebellar Cortex: Cytology and Organization. New York: Springer-Verlag.

    Google Scholar 

  • PEINADO, J. M. & MYERS, R. D. (1988) In vivo analysis of cortical amino acid neurotransmitters collected in the rat by a new double lumen push-pull catheter system. Neuroscience 24, 1027-1034.

    Google Scholar 

  • PERKEL, D. J., HESTRIN, S., SAH, P. & NICOLL, R. A. (1990) Excitatory synaptic currents in Purkinje cells. Proceedings: Biological Sciences (London) 241, 116-121.

    Google Scholar 

  • PERRY, T. L., CURRIER, R. D., HANSEN, S. & MACLEAN, J. (1977) Aspartate-taurine imbalance in dominantly inherited olivopontocerebellar atrophy. Neurology 27, 257-261.

    Google Scholar 

  • PETROFF, O. A. (2002) GABA and glutamate in the human brain. Neuroscientist 8, 562-573.

    Google Scholar 

  • POW, D. V., SULLIVAN, R., REYE, P. & HERMANUSSEN, S. (2002) Localization of taurine transporters, taurine, and (3)H taurine accumulation in the rat retina, pituitary, and brain. Glia 37, 153-168.

    Google Scholar 

  • RAYMOND, J. L., LISBERGER, S. G. & MAUK, M. D. (1996) The cerebellum: A neuronal learning machine? Science 272, 1126-1131.

    Google Scholar 

  • RUIGROK, T. J. H. & VOOGD, J. (2000) Organization of projections from the inferior olive to the cerebellar nuclei in the rat. Journal of Comparative Neurology 426, 209-228.

    Google Scholar 

  • RUIGROK, T. J. H. & CELLA, F. (1995) Precerebellar nuclei and red nucleus, in The Rat Nervous System (edited by PAXINOS, G.) pp. 286-292. New York: Academic Press.

    Google Scholar 

  • SARANSAARI, P. & OJA, S. S. (1999) Enhanced taurine release in cultured cerebellar granule cells in cell damaging conditions. Amino Acids 17, 323-334.

    Google Scholar 

  • SASAKI, K., BOWER, J. M. & LLINAS, R. (1989) Multiple Purkinje cell recording in rodent cerebellar cortex. European Journal of Neuroscience 1, 572-586.

    Google Scholar 

  • SAXON, D. (2003) Asymmetric Fos labeling in lobule X of the cerebellum following transtympanic tetrodotoxin (TTX) in the rat. Neuroscience Letters 339, 57-61.

    Google Scholar 

  • SAXON, D. W. & BEITZ, A. J. (1996) An experimental model for the non-invasive trans-synaptic induction of nitric oxide synthase in Purkinje cells of the rat cerebellum. Neuroscience 72, 157-165.

    Google Scholar 

  • SCHMIDT-OTT, K. M., TUSCHICK, S., KIRCHHOFF, F., VERKHRATSKY, A., LIEFELDT, L., KETTENMANN, H. & PAUL, M. (1998) Single-cell characterization of endothelin system gene expression in the cerebellum in situ. Journal of Cardiovascular Pharmacology 31(Suppl 1), S364-S366.

    Google Scholar 

  • SEKIGUCHI, M., OKAMOTO, K. & SAKAI, Y. (1986) Release of endogenous aspartate and glutamate induced by electrical stimulation in guinea pig cerebellar slices. Brain Research 378, 174-178.

    Google Scholar 

  • SIMPSON, R. E., WALTER, G. A. & PHILLIS, J. W. (1991) The effects of hypothermia on amino acid neurotransmitter release from the cerebral cortex. Neuroscience Letters 124, 83-86.

    Google Scholar 

  • SKILLING, S. R., SMULLIN, D. H., BEITZ, A. J. & LARSON, A. A. (1988) Extracellular amino acid concentrations in the dorsal spinal cord of freely moving rats following veratridine and nociceptive stimulation. Journal of Neurochemistry 51, 127-132.

    Google Scholar 

  • SLUCK, J. M., LIN, R. C., KATOLIK, L. I., JENG, A. Y. & LEHMANN, J. C. (1999) Endothelin converting enzyme-1-, endothelin-1-, and endothelin-3-like immunoreactivity in the rat brain. Neuroscience 91, 1483-1497.

    Google Scholar 

  • SMOLDERS, I., KHAN, G. M., LINDEKENS, H., PRIKKEN, S., MARVIN, C. A., MANIL, J., EBINGER, G. & MICHOTTE, Y. (1997) Effectiveness of vigabatrin against focally evoked pilocarpine-induced seizures and concomitant changes in extracellular hippocampal and cerebellar glutamate, gamma-aminobutyric acid and dopamine levels: A microdialysis-electrocorticography study in freely moving rats. Journal of Pharmacology and Experimental Therapeutics 283, 1239-1248.

    Google Scholar 

  • SOTELO, C., LLINAS, R. & BAKER, R. (1974) Structural study of inferior olivary neurons of the cat: Morphological correlates of electronic coupling. Journal of Neurophysiology 37, 541-559.

    Google Scholar 

  • STONE, T. W. & BURTON, N. R. (1988) NMDA receptors and ligands in the vertebrate CNS. Progress in Neurobiology 30, 333-368.

    Google Scholar 

  • STENGARD, K., THAM, R., O'CONNOR, W. T., HOGLUND, G. & UNGERSTEDT, U. (1993) Acute toluene exposure increases extracellular GABA in the cerebellum of rat: A microdialysis study. Pharmacology & Toxicology 73, 315-318.

    Google Scholar 

  • SUMNER, B. E., CRUISE, L. A., SLATTERY, D. A., HILL, D. R., SHAHID, M. & HENRY, B. (2003) Testing the validity of c-Fos expression profiling to aid the therapeutic classification of psychoactive drugs. Psychopharmacology (Berl) in press.

  • TIAN, J. B. & BISHOP, G. A. (2002) Stimulus-dependent activation of c-Fos in neurons and glia in rat cerebellum. Journal of Chemical Neuroanatomy 23, 157-170.

    Google Scholar 

  • TISCHMEYER, W., GRIMM, R., SCHICKNICK, H., BRYSCH, W. & SCHLINGENSIEPEN, K. H. (1994) Sequence-specific impairment of learning by c-jun antisense oligonucleotides. NeuroReport 5, 1501-1504.

    Google Scholar 

  • TOLLE, T. R., SCHADRACK, J., CASTRO-LOPES, J. M. & ZIEGLGANSBERGER, W. (1995) Immediate-early genes in nociception. In: Immediate-early genes in the central nervous system (edited by TOLLE, T. R., SCHADRACK, J., ZIEGLGANSBERGER, W.) pp. 51-77. New York, NY: Springer.

    Google Scholar 

  • TOTH, E., HARSING, L. G. JR., SERSHEN, H., RAMACCI, M. T. & LAJTHA, A. (1993) Effect of acetyl-L-carnitine on extracellular amino acid levels in vivo in rat brain regions. Neurochemical Research 18, 573-578.

    Google Scholar 

  • UEDA, T., UGAWA, S., SAISHIN, Y. & SHIMADA, S. (2001) Expression of receptor-activity modifying protein (RAMP) mRNAs in the mouse brain. Molecular Brain Research 93, 36-45.

    Google Scholar 

  • UEYAMA, T., HOUTANI, T., NAKAGAWA, H., BABA, K., IKEDA, M., YAMASHITA, T. & SUGIMOTO, T. (1994) A subpopulation of olivocerebellar projection neurons express neuropeptide Y. Brain Research 634, 353-357.

    Google Scholar 

  • UMETANI, T. (1990) Topographic organization of the cerebellar nucleocortical projection in the albino rat: An autoradiographic orthograde study. Brain Research 507, 216-224.

    Google Scholar 

  • UNO, Y., HORII, A., UNO, A., FUSE, Y., FUKUSHIMA, M., DOI, K. & KUBO, T. (2002) Quantitative changes in mRNA expression of glutamate receptors in the rat peripheral and central vestibular systems following hypergravity. Journal of Neurochemistry 81, 1308-1317.

    Google Scholar 

  • VAN DER HEYDEN, J. A. M., VENEMA, K. & KORF, J. (1980) In vivo release of endogenous ∂-amino butyric acid from rat striatum: Effects of muscimol, oxotremorine and morphine. Journal of Neurochemistry 34, 1648-1653.

    Google Scholar 

  • VAN VLIET, B. J., SEBBEN, M., DUMUIS, A., GABRION, J., BOCKAERT, J. & PIN, J. P. (1989) Endogenous amino acid release from cultured cerebellar neuronal cells: Effect of tetanus toxin on glutamate release. Journal of Neurochemistry 52, 1229-1239.

    Google Scholar 

  • VINCENT, S. R., WILLIAMS, J. A., REINER, P. B. & EL-HUSSEINI, A. EL-D. (1998) Monitoring neuronal NO release in vivo in cerebellum, thalamus and hippocampus. Progress in Brain Research 118, 27-35.

    Google Scholar 

  • VOLLENWEIDER, F. X., CUENOD, M. & DO, K. Q. (1990) Effect of climbing fiber deprivation on release of endogenous aspartate, glutamate, and homocysteate in slices of rat cerebellar hemispheres and vermis. Journal of Neurochemistry 54, 1533-1540.

    Google Scholar 

  • VOOGD, J. (1995) Cerebellum, in The Rat Nervous System (edited by PAXINOS, G.) pp. 309-349. New York: Academic Press.

    Google Scholar 

  • VOOGD, J., GERRITS, N. M. & RUIGROK, T. J. H. (1996) Organization of the vestibulocerebellum. Annals of the New York Academy of Sciences 781, 553-579.

    Google Scholar 

  • WACNIK, P. W., EIKMEIER, L. J., RUGGLES, T. R., RAMNARAINE, M. L., WALCHECK, B. K., BEITZ, A. J. & WILCOX, G. L. (2001) Functional interactions between tumor and peripheral nerve: Morphology, algogen identification and behavioral characterization of a new murine model of cancer pain. Journal of Neuroscience 21, 9355-9366.

    Google Scholar 

  • WIKLUND, L., TOGGENBURGER, G. & CUENOD, M. (1982) Aspartate: Possible neurotransmitter in cerebellar climbing fibers. Science 216, 78-80.

    Google Scholar 

  • XU-FRIEDMAN, M. A., HARRIS, K. M. & REGEHR, W. G. (2001) Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. Journal of Neuroscience 21, 6666-6672.

    Google Scholar 

  • XU-FRIEDMAN, M. A. & REGEHR, W. D. (2003) Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. Journal of Neuroscience 23, 2182-2192.

    Google Scholar 

  • YAMADA, K. & NABESHIMA, T. (1997) Simultaneous measurement of nitrite and nitrate levels as indices of nitric oxide release in the cerebellum of conscious rats. Journal of Neurochemistry 68, 1234-1243.

    Google Scholar 

  • YAMADA, K., WATANABE, M., SHIBATA, T., TANAKA, K., WADA, K. & INOUE, Y. (1996) EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 7, 2013-2017.

    Google Scholar 

  • YAMAMORI, T., MIKAWA, S. & KADO, R. (1995) Jun-B expression in Purkinje cells by conjunctive stimulation of climbing fibre and AMPA. Neuroreport 6, 793-796.

    Google Scholar 

  • YAMANO, M. & TOHYAMA, M. (1994) Distribution of corticotropin-releasing factor and calcitonin gene-related peptide in the developing mouse cerebellum. Neuroscience Research 19(4) 387-396.

    Google Scholar 

  • ZHANG, N. & OTTERSEN, O. P. (1993) In search of the identity of the cerebellar climbing fiber transmitter: Immunocytochemical studies in rats. Canadian Journal of Neurological Sciences 20(Suppl 3), S36-S42.

    Google Scholar 

  • ZHANG, N., WALBERG, F., LAAKE, J. H., MELDRUM, B. S. & OTTERSEN, O. P. (1990) Aspartate-like and glutamate-like immunoreactivities in the inferior olive and climbing fibre system: A light microscopic and semiquantitative electron microscopic study in rat and baboon (Papio Anubis). Neuroscience 38, 61-80.

    Google Scholar 

  • ZHOU, Y. D., TURNER, T. J. & DUNLAP, K. (2003) Enhanced G protein-dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca2+ channel-mutant mouse, tottering. Journal of Physiology 547, 497-507.

    Google Scholar 

  • ZHANG, Y., FORSTER, C., MILNER, T. A. & IADECOLA, C. (2003) Attenuation of activity-induced increases in cerebellar blood flow by lesion of the inferior olive. American Journal of Physiology-Heart and Circulatory Physiology 285(3), H1177-H1182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin J. Beitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beitz, A.J., Saxon, D. Harmaline-induced climbing fiber activation causes amino acid and peptide release in the rodent cerebellar cortex and a unique temporal pattern of Fos expression in the olivo-cerebellar pathway. J Neurocytol 33, 49–74 (2004). https://doi.org/10.1023/B:NEUR.0000029648.81071.20

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000029648.81071.20

Keywords

Navigation