Skip to main content
Log in

Abstract

Complex biofilms of varying compositions colonize the surfaces of the oral cavity. Many of these biofilms are associated with chronic diseases of which several are explored in this article. The importance of understanding these biofilms by using in vitro models in the laboratory is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armitage GC (1999) Development of a classi cation system for periodontal diseases and conditions. Ann. Periodontol. 4:1-6

    Google Scholar 

  • Badawi H, Evans RD, Wilson M, Ready D, Noar JH #x0026; Pratten J (2003) The effect of orthodontic bonding materials on dental plaque accumulation and composition in vitro. Biomaterials 24:3345–3350

    Google Scholar 

  • Beighton D & Lynch E (1995) Comparison of selected microflora of plaque and underlying carious dentine associ-ated with primary root caries lesions. Caries Res. 29:154–158

    Google Scholar 

  • Bowden GHW (1991) Which bacteria are cariogenic in humans? In: Johnson NW (Ed) Risk Markers for Oral Diseases. (pp 266–286). Cambridge University Press, Cam-bridge, UK

    Google Scholar 

  • Brailsford SR, Lynch E & Beighton D (1998) The isolation of Actinomyces naeslundii from sound root surfaces and root carious lesions. Caries Res. 32:100–106

    Google Scholar 

  • Brailsford SR, Tregaskis RB, Leftwich HS & Beighton D (1999) The predominant Actinomyces spp. isolated from infected dentin of active root caries lesions. J. Dent. Res. 78:1525–1534

    Google Scholar 

  • Brauner AW & Conrads G (1995) Studies into the microbial spectrum of apical periodontitis. Int. Endod. J. 28:244-248.

    Google Scholar 

  • Bussher HJ & van der Mei HC (1995) Use of flow chamber devices and image analysis methods to study microbial adhesion. Methods Enzymol. 253:455–477

    Google Scholar 

  • Carlsson J & Gothefors L (1975) Transmission of Lactobacillus jensenii and Lactobacillus acidophilus from mother to child at time of delivery. J. Clin. Micro. 1:124–128

    Google Scholar 

  • Characklis WG (1989) Laboratory bio lm reactors. In: Char-acklis WG & Marshall KC (Eds) Biofilms. Wiley, New York, USA

    Google Scholar 

  • Cianciola LJ, Park BH & Bruck E (1982) Prevalence of periodontal disease in insulin-dependent diabetes mellitus (juvenile diabetes). J. Am. Dent. Assoc. 104:653–660

    Google Scholar 

  • Cowan MM, Taylor KG & Doyle RJ (1986) Kinetic analysis of Streptococcus sanguis adhesion to arti cial pellicle. J. Dent. Res. 65:1278–1283

    Google Scholar 

  • Dahle ´n G, Fabricius L, Heyden G, Holm SE & Möller AJ (1982) Apical periodontitis induced by selected bacterial strains in root canals of immunized and nonimmunized monkeys. Scand. J. Dent. Res. 90:207–216

    Google Scholar 

  • Dahlén G, Jinsson R, Öhman S-C, Nielsen R & Möller, AJ (1992) Infections of oral mucosa and submucosa. In: Slots J. & Tauman MA (Eds) Contemporary Oral Microbiology and Immunology. (pp 476–499). Mosby Year Book

  • Darby IB, Hodge PJ, Riggio MP & Kinane DF (2000) Microbial comparison of smoker and non-smoker adult and early-onset periodontitis patients by polymerase chain reaction. J. Clin. Periodontol. 27:417–424

    Google Scholar 

  • Davenport JC (1970) The oral distribution of Candida in denture stomatitis. Br. Dent. J. 129:151–156

    Google Scholar 

  • Dymock D, Weightman AJ, Scully C & Wade WG (1996) Molecular analysis of microflora associated with dentoalveo-lar abscesses. J. Clin. Microbiol. 34:537–542

    Google Scholar 

  • Egan MW, Spratt DA, Ng Y-L, Lam JA, Moles DR & Gulabivala K (2002) Prevalence of yeasts in saliva and root canals of teeth associated with apical periodontitis. Int. Endod. J. 35:321–329

    Google Scholar 

  • Frandsen EV, Pedrazzoli V & Kilian M (1991) Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol. Immunol. 6:129–133

    Google Scholar 

  • Grenier D #x0026; Mayrand D (1986) Nutritional relationships between oral bacteria. Infect. Immun. 53:616–620

    Google Scholar 

  • Haffajee AD #x0026; Socransky SS (1994) Microbial etiological agents of destructive periodontal diseases. Periodontol. 2000 5:78–111

    Google Scholar 

  • Holm G (1994) Smoking as an additional risk for tooth loss. J. Periodontol. 65:996-1001

    Google Scholar 

  • Kolenbrander PE, Ganeshkumar N, Cassels FJ & Hughes CV (1993) Coaggregation:Speci c adherence among human oral plaque bacteria. FASEB J. 7:406–413

    Google Scholar 

  • Kornman KS, Crane A, Wang HY, di Giovine FS, Newman MG, Pirk FW, Wilson TG, Jr, Higginbottom FL & Duff GW (1997) The interleukin-1 genotype as a severity factor in adult periodontal disease. J. Clin. Periodontol. 24:72–77

    Google Scholar 

  • Lamster IB (1997) Evaluation of components of gingival crevicular fluid as diagnostic tests. Ann. Periodontol. 2: 123–137

    Google Scholar 

  • Li Y & Cau eld PW (1995) The delity of initial acquisition of mutans streptococci by infants from their mothers. J. Dent. Res. 74:681–685

    Google Scholar 

  • Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50:353-380

    Google Scholar 

  • Loesche WJ & Kazor C (2002) Microbiology and treatment of halitosis. Periodontology 2000 28:256-279

    Google Scholar 

  • McNamara TK, Alexander JF, Lee M & Plains M (1972) The role of microorganisms in the production of oral malodour. Oral Surg. 34:41–48

    Google Scholar 

  • Marsh PD (1991) The signi cance of maintaining the stability of the natural micro flora of the mouth. Br. Dent. J. 171:174–177

    Google Scholar 

  • Marsh PD (1994) Microbial ecology of dental plaque and its signi cance in health and disease. Adv. Dent. Res. 8:263–271

    Google Scholar 

  • Matharu S, Spratt DA, Pratten, J, Ng Y-L, Mordan N, Wilson M & Gulabivala K (2001) An in vitro model for the study of microbial microleakage around dental amalgam restorations: a qualitative evaluation. Int. J. Endod. 34:547–553

    Google Scholar 

  • McKee AS, McDermid AS, Ellwood DC & Marsh PD (1985) The establishment of reproducible, complex communities of Figure 7. The Constant Depth Film Fermentor. oral bacteria in the chemostat using de ned inocula. J. App. Bacteriol. 59:263–275

    Google Scholar 

  • Meskin LH (1996) A breath of fresh air. J. Am. Dent. Assoc. 127:1282–1286

    Google Scholar 

  • Mombelli A, Rutar A & Lang NP (1995) Correlation of the periodontal status 6 years after puberty with clinical and microbiological conditions during puberty. J. Clin. Period-ontol. 22:300–305

    Google Scholar 

  • Moore LV, Moore WE, Cato EP, Smibert RM, Burmeister JA, Best AM & Ranney RR (1987) Bacteriology of human gingivitis. J. Dent. Res. 66:989–995

    Google Scholar 

  • Oliver RC & Tervonen T (1994) Diabetes-a risk factor for periodontitis in adults? J. Periodontol. 65:530–538

    Google Scholar 

  • Olsen I (1974) Denture stomatitis. Occurrence and distribution of fungi. Acta Odontol. Scand. 32:329–333

    Google Scholar 

  • Palmqvist S, Unell L #x0026; Lindquist B (1984) Denture stomatitis in nursing home patients. Swed Dent. J. 8:73-80

    Google Scholar 

  • Paster BJ, Bodies SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A. & Dewhirst FE (2001) Bacterial diversity in human subgingival plaque. J. Bacteriol. 183:3770-3783

    Google Scholar 

  • Pearce C, Bowden GH, Evans M, Fitzsimmons SP, Johnson J, Sheridan MJ, Wientzen R & Cole MF (1995) Identification of pioneer viridans streptococci in the oral cavity of human neonates. J. Med. Microbiol. 42:67-72

    Google Scholar 

  • Perrons CJ & Donoghue HD (1990) Colonization resistance of de ned bacterial plaques to Streptococcus mutans implanta-tion on teeth in a model mouth. J. Dent. Res. 69:483-488

    Google Scholar 

  • Persson S, Edlund M-B, Claesson R & Carlsson J (1990) The formation of hydrogen sulphide and methyl-mercaptan by oral bacteria. Oral Microbiol. Immunol. 5:195-201

    Google Scholar 

  • Pigman W & Elliott HC (1952) An arti cial mouth for caries research. J. Dent. Res. 31:627-633

    Google Scholar 

  • Pine CM, Pitts NB, Steele JG, Nunn JN & Treasure E (2001) Dental restorations in adults in the UK in 1998 and implications for the future. Br. Dent. J. 190:4-8

    Google Scholar 

  • Pratten J, Wilson M, & Spratt DA (2003a) Characterization of in vitro oral bacterial bio lms by traditional and molecular methods. Oral Microbiol. Immunol. 18:45-49

    Google Scholar 

  • Pratten J, Pasu M, Jackson G, Flanagan A & Wilson M (2003b) Modeling oral malodour in a longitudinal study. Arch. Oral. Biol. 48:737-743

    Google Scholar 

  • Reeves R #x0026; Stanely HR (1966) The relationship of bacterial penetration and pulpal pathos in carious teeth. Oral Surg. 22: 59-65

    Google Scholar 

  • Rickard AH, Gilbert P, High NJ, Kolenbrander PE & Handley PS (2003) Bacterial coaggregation:an integral process in the development of multi-species biofilms. Trends Microbiol. 11: 94-100

    Google Scholar 

  • Rosenberg M, Septon I, Eli I, Brenner S, Gelernter I & Gabbay J (1991) Halitosis measurement using an industrial sulphide monitor. J. Periodontol. 62:487-489

    Google Scholar 

  • Sansone C, Van Route J, Joshipura K, Kent R & Margolis HC (1993) The association of mutans streptococci and non-mutans streptococci capable of acidogenesis at a low pH with dental caries on enamel and root surfaces. J. Dent. Res. 72: 508-516

    Google Scholar 

  • Savitt ED & Kent RL (1991) Distribution of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis by subject age. J Periodontol. 62:490-494

    Google Scholar 

  • Savitt ED & Socransky SS (1984) Distribution of certain subgingival microbial species in selected periodontal conditions. J. Periodont. Res. 19:111-123

    Google Scholar 

  • Saxton CA (1973) Scanning electron microscope study of the formation of dental plaque. Caries Res. 7:102-119

    Google Scholar 

  • Schupbach P, Osterwalder V #x0026; Guggenheim R (1996) Human root caries:Microbiota of a limited number of root caries lesions. Caries Res. 30:52-64

    Google Scholar 

  • Schupbach P, Oppenheim FG, Lendenmann U, Lamkin MS, Yao Y & Guggehheim B (2001) Electron-microscopic dem-onstration of proline-rich proteins, stathlerin, and histatins in acquired enamel pellicles in vitro. Eur. J. Oral Sci. 109:60-68

    Google Scholar 

  • Sissons CH (1997) Artificial dental plaque bio lm model systems. Adv. Dent. Res. 11:110-126

    Google Scholar 

  • Slots J (1977) Micro flora in the healthy gingival sulcus in man. Scand. J. Dent. Res. 85:247-254

    Google Scholar 

  • Smith DJ, Anderson JM, King WF, Van Houte J & Taubmam MA (1993) Oral streptococcal colonization of infants. Oral Microbiol. Immunol. 8:1-4

    Google Scholar 

  • Socransky SS, Gibbons RJ, Dale AC, Bortnik L, Rosenthal E & MacDonald JB (1963) The microbiota of the gingival crevice in man. 1 Total microscopic and viable counts and counts of speci c organisms. Arch. Oral Biol. 8:275-280

    Google Scholar 

  • Spratt DA, Weightman AJ & Wade WG (1999) Diversity of oral asaccharolytic Eubacterium species in periodontitis-identi cation of novel phylotypes representing, uncultivated taxa. Oral Microbiol. Immunol. 14:56-59

    Google Scholar 

  • Stashenko KP & Hillman JD (1989) Micro flora of plaque in rats following infection with and LDH de cient mutant of Streptococcus rattus. Caries Res. 23:375-377

    Google Scholar 

  • Steele JG, Walls AW, Ayatollahi SM & Murray JJ (1996) Major clinical ndings from a dental survey of elderly people in three different English communities. Br. Dent. J. 180:17-23

    Google Scholar 

  • Sundqvist G (1992) Associations between microbial species in dental root canal infections. Oral Microbiol. Immunol 7: 257-262

    Google Scholar 

  • Tanner A, Maiden MF, Pasten BJ & Dewhirst FE, (1994) The impact of 16S ribosomal RNA-based phylogeny on the taxonomy of oral bacteria. Periodontol. 2000 5:26-51.

    Google Scholar 

  • van Houte J (1994) Role of micro-organisms in caries etiology. J. Dent. Res. 73:672-681

    Google Scholar 

  • Waler SM (1997) On the transformation of sulphur-containing amino acids and peptides to volatile sulphur compounds (VSC) in the human mouth. Eur. J. Oral Sci. 105:535-537

    Google Scholar 

  • Watts A & Paterson C (1990) Detection of bacteria in histological sections of the dentel pulp. Int. Endod. J. 23: 1-12

    Google Scholar 

  • Wimpenny JW (1981) Spatial order in microbial ecosystems. Biological Rev. 56:295-342

    Google Scholar 

  • Wojcicki CJ, Harper DS & Robinson PJ (1986) Differences in periodontal disease associated microorganisms of gingival plaque in prepubertal, pubertal and postpubertal children. J. Periodontol. 58:219-223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spratt, D., Pratten, J. Biofilms and the Oral Cavity. Re/Views in Environmental Science and Bio/Technology 2, 109–120 (2003). https://doi.org/10.1023/B:RESB.0000040466.82937.df

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RESB.0000040466.82937.df

Navigation