Skip to main content
Log in

Chromosomal Linkage Associated with Disease Severity in the Hydrocephalic H-Tx Rat

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Infantile hydrocephalus results in neurological deficits despite surgical treatment. Fetal-onset hydrocephalus in humans can be caused by developmental abnormalities that are genetic in origin. The H-Tx rat has hydrocephalus with 40% penetrance and a polygenic inheritance. A backcross with Fisher F344 inbred strain produced a total of 1500 progeny with 17.5% hydrocephalus. Of these, only 12.3% had overt disease and the remaining 5.2% had mild disease seen only after fixation of the brain. Disease severity was measured for all affected rats using the ratio of ventricle to brain width. The severity measure confirmed that there are two populations, mild hydrocephalus (M; ratio, <0.4) and severe hydrocephalus (S; ratio, >0.4), with a small overlap. For genotyping, the two populations were each subdivided based on the ratio measure to give a total of four groups of increasing severity. After an initial genome scan with microsatellite markers, all hydrocephalic rats and a subset of 128 normal progeny were genotyped on chromosomes 4, 9, 10, 11, 17 and 19. Rats in the mildest group had association with a locus on chromosome 4 (LOD 2.4), whereas those in the severest group were associated with a locus on chromosome 17 (LOD 3.2). All except the least affected group were associated with a heterozygous genotype on chromosomes 10 and 11 (LOD 4.5 and 3.5, respectively). Chromosomes 9 and 19 had weak linkage to hydrocephalus. The number of hydrocephalus-associated loci carried by each rat correlated with the severity of disease. It is concluded that the severity of hydrocephalus in H-Tx is influenced by different genetic loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Barros-Nunes, P., andRivas, F. (1993). Autosomal recessive congenital stenosis of aqueduct of Sylvius. Genet. Couns. 4: 19-23.

    Google Scholar 

  • Borit, A., andSidman, R. L. (1972). New mutant mouse with communicating hydrocephalus and secondary aqueduct stenosis. Acta Neuropathol. Berl. 21: 316-331.

    Google Scholar 

  • Brookshire, B. L.,Fletcher, J. M.,Bohan, T. P.,Landry, S. H.,Davidson, K. C., andFrancis, D. J. (1995). Verbal and non verbal skill discrepancies in children with hydrocephalus: A five-year longitudinal follow-up. J. Pediatr. Psychol. 20: 785-800.

    Google Scholar 

  • Bruni, J. E.,Del Bigio, M. R.,Cardoso, E. R., andPersaud, T. V. N. (1988). Neuropathology of congenital hydrocephalus in the SUMS/NP mouse. Acta Neurochir. 92: 118-122.

    Google Scholar 

  • D'Amato, C. J.,O'hea, K. S.,Hicks, S. P.,Glover, R. A., andAnnesley, T. M. (1986). Genetic prenatal aqueductal stenosis with hydrocephalus in rat. J. Neuropathol. Exp. Neurol. 45: 665-682.

    Google Scholar 

  • Dennis, M.,Fitz, C. R.,Netley, C. T.,Sugar, J.,Harnwod-Nash, D. C. F.,Hendrick, B.,Hoffman, H. J., andHumphreys, R. P. (1981). The intelligence of hydrocephalic children. Arch. Neurol. 38: 607-615.

    Google Scholar 

  • Fletcher, J. M.,Bohan, T. P.,Brandt, M. E.,Brookshire, B. L.,Beaver, S. R.,Francis, D. J.,Davidson, K. C.,Thompson, N. M., andMiner, M. E. (1992). Cerebral white matter and cognition in hydrocephalic children. Arch. Neurol. 49: 818-824.

    Google Scholar 

  • Gruneberg, H. (1943a). Two new mutant genes in the house mouse. J. Genet. 45: 22-28.

    Google Scholar 

  • Gruneberg, H. (1943b). Congenital hydrocephalus in the mouse, a case of spurious pleiotropism. J. Genet. 45: 1-21.

    Google Scholar 

  • Jacob, H.,Brown, D.,Bunker, R., et al. (1995). A genetic linkage map of the laboratory rat, Rattus norvegicus. Nature Genet. 9: 63-69.

    Google Scholar 

  • Jones, H. C. andBucknall, R. M. (1988). Inherited prenatal hydrocephalus in the H-Tx rat: A morphological study. Neuropathol. Appl. Neurobiol. 14: 263-274.

    Google Scholar 

  • Jones, H. C.,Dack, S., andEllis, C. (1987). Morphological aspects of the development of hydrocephalus in a mouse mutant (SUMS/NP). Acta Neuropathol. Berl. 72: 268-276.

    Google Scholar 

  • Jones, H. C.,Rivera, K. M., andHarris, N. G. (1995). Learning deficits in congenitally hydrocephalic rats and prevention by early shunt treatment. Child' Nerv. Syst. 11: 665-660.

    Google Scholar 

  • Jones, H. C.,Lopman, B. A.,Jones, T. W.,Carter, B. J.,Depelteau, J. S., andMorel, L. (2000). The expression of inherited hydrocephalus in H-Tx rats. Child' Nerv. Syst. 16: 578-584.

    Google Scholar 

  • Jones, H. C.,Depelteau, J. S.,Carter, B. J.,Lopman, B. A., andMorel, L. (2001). Genome-wide linkage analysis of inherited hydrocephalus in the H-Tx rat. Mammal. Genome 12: 22-26.

    Google Scholar 

  • Kiefer, M.,Eymann, R.,von Tiling, S.,Muller, A.,Steudel, W. I., andBooz, K. H. (1998). The ependyma in chronic hydrocephalus. Child' Nerv. Syst. 14: 263-270.

    Google Scholar 

  • Kohn, D. F.,Chinookoswong, N., andChou, S. M. (1981). A new model of congenital hydrocephalus in the rat. Acta Neuropathol. Berl. 54: 211-218.

    Google Scholar 

  • Kume, T.,Deng, K.-Y.,Winfrey, V.,Gould, D. B.,Walter, M. A., andHogan, B. L. M. (1998). The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93: 985-996.

    Google Scholar 

  • Lander, E. S., andKruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genet. 11: 241-247.

    Google Scholar 

  • Lander, E. S.,Green, P.,Abramson, J.,Barlow, A.,Daly, M. J.,Lincoln, S. E.,Newburg, L., andAbrahamson, J. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181.

    Google Scholar 

  • Laurence, K. M., andCoates, S. (1962). The natural history of hydrocephalus: Detailed analysis of 182 unoperated cases. Arch. Dis. Childhood 37: 345-362.

    Google Scholar 

  • Lorber, J. (1984). The family history of uncomplicated congenital hydrocephalus: An epidemiological study based on 270 probands. Br. Med. J. 289: 281-284.

    Google Scholar 

  • Mahler, M.,Bristol, I. J.,Sundberg, J. P.,Churchill, G. A.,Birkenmeier, E. H.,Elson, C. O., andLeiter, E. H. (1999). Genetic analysis of susceptibility to dextran sulfate sodium-induced colitis in mice. Genomics 55: 147-156.

    Google Scholar 

  • Miyazawa, T.,Sato, K.,Ikeda, Y.,Nakamura, N., andMatsumoto, K. (1997). A rat model of spontaneously arrested hydrocephalus. Child' Nerv. Syst. 13: 189-193.

    Google Scholar 

  • Peres-Figares, J. M.,Jimenez, D. F.,Fernandez-Llebrez, P.,Cifuentes, M.,Riera, P.,Rodriguez, S., andRodriguez, E. M. (1998). Spontaneous congenital hydrocephalus in the mutant mouse hyh. Changes in the ventricular system and the subcommissural organ. J. Neuropathol. Exp. Neurol. 57(2): 188-202.

    Google Scholar 

  • Remmers, E. F.,Longman, R. E.,Du, Y.,O'Hare, A.,Cannon, G. W.,Griffiths, M. M., andWilder, R. L. (1996). A genome scan localizes five non-MHC loci controlling collagen-induced arthritis in rats. Nature Genet. 14: 82-85.

    Google Scholar 

  • Santiago, M. L.,Mary, C.,Parzy, D.,Jacquet, C.,Montagutelli, X.,Parkhouse, R. M.,Lemoine, R.,Izui, S., andReininger, L. (1998). Linkage of a major quantitative trait locus to Yaa geneinduced lupus-like nephritis in (NZW 3 C57BL/6)F1 mice Eur. J. Immunol. 28: 4257-4267.

    Google Scholar 

  • Sasaki, S.,Goto, H.,Nagano, H.,Furuya, K.,Omata, Y.,Kanazawa, K.,Suzuki, K.,Sudo, K., andCollmann, H. (1983). Congenital hydrocephalus revealed in the inbred rat LEW/Jms. Neurosurgery 13: 548-554.

    Google Scholar 

  • Suda, K.,Sato, K.,Takeda, N.,Miyazawa, T., andArai, H. (1994). Early ventriculoperitoneal shunt-effects on learning ability and synaptogenesis of the brain in congenitally hydrocephalic H-Tx rats. Child' Nerv. Syst. 10: 19-23.

    Google Scholar 

  • Takeuchi, I. K.,Kimura, R.,Matsuda, M., andShoji, R. (1987). Absence of subcommissural organ in the cerebral aqueduct of congenital hydrocephalus spontaneously occurring in MT/HOK1 dr mice. Acta Neuropathol. Berl. 73: 320-322.

    Google Scholar 

  • Takeuchi, I. K.,Kimura, R., andShoji, R. (1988). Dysplasia of subcommissural organ in congenital hydrocephalus spontaneously occurring in CWS/Idr rats. Experientia 44: 338-340.

    Google Scholar 

  • Teuscher, C.,Butterfield, R. J.,Ma, R. Z.,Zachary, J. F.,Doerge, R. W., andBlankenhorn, E. P. (1999). Sequence polymorphisms in the chemokines Scya1 (TCA-3), Scya2 (monocyte chemoattractant protein (MCP)-1), and Scya12 (MCP-5) are candidates for eae7, a locus controlling susceptibility to monophasic remitting/ nonrelapsing experimental encephalomyelitis. J. Immunol. 163: 2262-2266.

    Google Scholar 

  • Varadi, V.,Toth, Z.,Torok, O., andPapp, Z. (1988). Heterogeneity and recurrence risk for congenital hydrocephalus (ventriculomegaly): A prospective study. Am. J. Med. Genet. 29: 305-310.

    Google Scholar 

  • Wada, M. (1988). Congenital hydrocephalus in HTX-rats: Incidence, pathogenesis and developmental impairment. Neurol. Med. Chir. 28: 955-964.

    Google Scholar 

  • Weis, J. J.,McCracken, B. A.,Ma, Y.,Fairbairn, D.,Roper, R. J.,Morrison, T. B.,Weis, J. H.,Zachary, J. F.,Doerge, R. W., andTeuscher, C. (1999). Identification of quantitative trait loci governing arthritis severity and humoral responses in the murine model of Lyme disease. J. Immunol. 162: 948-956.

    Google Scholar 

  • Zlotogora, J.,Sagi, M., andCohen, T. (1994). Familial hydrocephalus of prenatal onset, Am. J. Med. Genet. 49: 202-204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, H.C., Carter, B.J., Depelteau, J.S. et al. Chromosomal Linkage Associated with Disease Severity in the Hydrocephalic H-Tx Rat. Behav Genet 31, 101–111 (2001). https://doi.org/10.1023/A:1010266110762

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010266110762

Navigation