Skip to main content
Log in

O-Linked Glycosylation in the Mammary Gland: Changes that Occur During Malignancy

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Glycosylation is a very important posttranslational modification of many biologically relevant molecules. A change in the structure of glycans added to glycoproteins and glycolipids is a common feature of the change to malignancy. With the cloning of many of the glycosyltransferases and the identification of specific target molecules, it is now possible to define these changes at the molecular level and to dissect the mechanisms involved. Within the mammary gland, mucin-type O-linked glycosylation has been studied most extensively. In normal resting, pregnant and lactating breast, mucin O-glycans are largely extended (core 2 type) structures. In contrast, mucin O-glycans found in breast carcinomas are often truncated (core 1 type). One mechanism that is responsible for this increase in core 1 structures is a change in the expression of glycosyltransferases, particularly an increase in the expression of the sialyltransferase, ST3Gal-I. The loss, at least to some degree, of core 2 based glycans is a consistent feature of MUC1 mucin when it is expressed by mammary tumours as demonstrated by the unmasking of the SM3 epitope in greater than 90% of breast carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Taylor-Papadimitriou and J. M. Burchell (1999). O-glycosylation. In T. Creighton (ed.), Encyclopedia of Molecular Biolog, John Wiley & Sons, Inc., London, pp. 1047-1051.

    Google Scholar 

  2. F. I. Comer and G. W. Hart (2000). O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J. Biol. Chem. 275:29179-29182.

    PubMed  Google Scholar 

  3. S. Hakomori (1989). Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer Res. 52:257-331.

    PubMed  Google Scholar 

  4. M. Granovsky, J. Fata, J. Pawling, W. J. Muller, R. Khokha, and J. W. Dennis (2000). Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6:306-312.

    PubMed  Google Scholar 

  5. S. R. Hull, A. Bright, K. L. Carraway, M. Abe, D. F. Hayes, and D. W. Kufe (1989). Oligosaccharide differences in the DF3 sialomucin antigen from normal human milk and the BT-20 human breast carcinoma cell line. Cancer Commun. 1:261-267.

    PubMed  Google Scholar 

  6. K. O. Lloyd, J. Burchell, V. Kudryashov, B. W. T. Yin, and J. Taylor-Papadimitriou (1996). Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J. Biol. Chem. 271:33325-33334.

    PubMed  Google Scholar 

  7. S. A. Brooks (2000). The involvement of Helix pomatia lectin (HPA) binding N-acetylgalactosamine glycans in cancer progression. Histol. Histopathol. 15:143-158.

    PubMed  Google Scholar 

  8. J. M. Burchell, H. Durbin, and J. Taylor-Papadimitriou (1983). Complexity of expression of antigenic determinants, recognized by monoclonal antibodies HMFG-1 and HMFG-2, in normal and malignant human mammary epithelial cells. J. Immunol. 131:508-513.

    PubMed  Google Scholar 

  9. J. M. Burchell, S. Gendler, J. Taylor-Papadimitriou, A. Girling, A. Lewis, R. Millis, and D. Lamport (1987). Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res. 47:5476-5482.

    PubMed  Google Scholar 

  10. A. Girling, J. Bartkova, J. Burchell, S. Gendler, C. Gillett, and J. Taylor-Papadimitriou (1989). A core protein epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas. Int. J. Cancer 43:1072-1076.

    PubMed  Google Scholar 

  11. J. M. Burchell, R. Poulsom, A. Hanby, C. Whitehouse, L. Cooper, H. Clausen, D. Miles, and J. Taylor-Papadimitriou (1999). An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 9:1307-1311.

    PubMed  Google Scholar 

  12. M. Dalziel, C. Whitehouse, I. McFarlane, I. Brockhausen, S. Gschmeissner, T. Schwientek, H. Clausen, J. Burchell, and J. Taylor-Papadimitriou (2001). The relative activities of the C2GnT1and ST3GalI glycosyltransferases determine O-glycan structure and expression of a tumour-associated epitope on MUC1. J. Biol. Chem. 276:11007-11015.

    PubMed  Google Scholar 

  13. K. Ryuko, D. J. Schol, F. G. Snijdewint, S. von Mensdorff-Pouilly, R. J. Poort-Keesom, Y. A. Karuntu-Wanamarta, R. A. Verstraeten, K. Miyazaki, P. Kenemans, and J. Hilgers (2000). Characterization of a new MUC1 monoclonal antibody (VU-2-G7) directed to the glycosylated PDTR sequence of MUC1. Tumour Biol. 21:197-210.

    PubMed  Google Scholar 

  14. H. Clausen and E. P. Bennett (1996). A. family of UDPGalNAc: Polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 6:635-646.

    PubMed  Google Scholar 

  15. K. Nehrke, F. K. Hagen, and L. A. Tabak (1998). Isoformspecific O-glycosylation by murine UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase-T3, in vivo. Glycobiology 8:367-371.

    PubMed  Google Scholar 

  16. H. H. Wandall, H. Hassan, E. Mirgorodskaya, A. K. Kristensen, P. Roepstorff, E. P. Bennett, P. A. Nielsen, M. A. Hollingsworth, J. Burchell, J. Taylor-Papadimitriou, and H. Clausen (1997). Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1,-T2, and-T3. J. Biol. Chem. 272:23503-23514.

    PubMed  Google Scholar 

  17. I. Brockhausen, G. Moller, G. Merz, K. Adermann, and H. Paulsen (1990). Control of mucin synthesis: The peptide portion of synthetic O-glycopeptide substrates influences the activity of O-glycan core 1 UDPgalactose: N-acetyl-alphagalactosaminyl-R beta 3-galactosyltransferase. Biochemistry 29:10206-10212.

    PubMed  Google Scholar 

  18. K. Nehrke, F. K. Hagen, and L. A. Tabak (1996). Charge distribution of flanking amino acids influences O-glycan acquisition in vivo. J. Biol. Chem. 271:7061-7065.

    PubMed  Google Scholar 

  19. K. Nehrke, K. G. Ten Hagen, F. K. Hagen, and L. A. Tabak (1997). Charge distribution of flanking amino acids inhibits Oglycosylation of several single-site acceptors in vivo. Glycobiology 7:1053-1060.

    PubMed  Google Scholar 

  20. S. Rottger, J. White, H. H. Wandall, J. C. Olivo, A. Stark, E. P. Bennett, C. Whitehouse, E. G. Berger, H. Clausen, and T. Nilsson (1998). Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J. Cell Sci. 111:45-60.

    PubMed  Google Scholar 

  21. I. Brockhausen, J. M. Yang, J. Burchell, C. Whitehouse, and J. Taylor-Papadimitriou (1995). Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur. J. Biochem. 233:607-617.

    PubMed  Google Scholar 

  22. S. J. Gendler, C. A. Lancaster, J. Taylor-Papadimitriou, T. Duhig, N. Peat, J. Burchell, L. Pemberton, E. N. Lalani, and D. Wilson (1990). Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 265:15286-15293.

    PubMed  Google Scholar 

  23. E. P. Bennett, H. Hassan, U. Mandel, E. Mirgorodskaya, P. Roepstorff, J. Burchell, J. Taylor-Papadimitriou, M. A. Hollingsworth, G. Merkx, A. G. van Kessel, H. Eiberg, R. Steffensen, and H. Clausen (1998). Cloning of a human UDP-N-acetyl-alpha-D-Galactosamine: Polypeptide Nacetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J. Biol. Chem. 273:30472-30481.

    PubMed  Google Scholar 

  24. E. P. Bennett, H. Hassan, U. Mandel, M. A. Hollingsworth, N. Akisawa, Y. Ikematsu, G. Merkx, A. G. van Kessel, S. Olofsson, and H. Clausen (1999). Cloning and characterization of a close homologue of human UDP-N-acetyl-alpha-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy. J. Biol. Chem. 274:25362-25370.

    PubMed  Google Scholar 

  25. E. P. Bennett, H. Hassan, M. A. Hollingsworth, and H. Clausen (1999). A novel human UDP-N-acetyl-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase, GalNAc-T7, with specificity for partial GalNAc-glycosylated acceptor substrates. FEBS Lett. 460:226-230.

    PubMed  Google Scholar 

  26. T. White, E. P. Bennett, K. Takio, T. Sorensen, N. Bonding, and H. Clausen (1995). Purification and cDNA cloning of a human UDP-N-acetyl-alpha-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase. J. Biol. Chem. 270:24156-24165.

    PubMed  Google Scholar 

  27. H. Hassan, C. A. Reis, E. P. Bennett, E. Mirgorodskaya, P. Roepstorff, M. A. Hollingsworth, J. Burchell, J. Taylor-Papadimitriou, and H. Clausen (2000). The lectin domain of UDP-N-acetyl-D-galactosamine: Polypeptide Nacetylgalactosaminyltransferase-T4 directs its glycopeptide specificities. J. Biol. Chem. 275:38197-38205.

    PubMed  Google Scholar 

  28. S. Muller, S. Goletz, N. Packer, A. Gooley, A. M. Lawson, and F. G. Hanisch (1997). Localization of O-glycosylation sites on glycopeptide fragments from lactation-associated MUC1. All putative sites within the tandem repeat are glycosylation targets in vivo. J. Biol. Chem. 272:24780-24793.

    PubMed  Google Scholar 

  29. S. Muller, K. Alving, J. Peter-Katalinic, N. Zachara, A. A. Gooley, and F. G. Hanisch (1999). High density O-glycosylation on tandem repeat peptide from secretory MUC1 of T47D breast cancer cells. J. Biol. Chem. 274:18165-18172.

    PubMed  Google Scholar 

  30. F.-G. Hanisch (2000). O-glycosylation of human MUC-1: Site specificity, biosynthetic regulation and immunological implications. In 12th Joint Meeting, Villeneuve d'Ascq, Lille, France, p. 14.

  31. M. F. Bierhuizen and M. Fukuda (1992). Expression cloning of a cDNA encoding UDP-GlcNAc:Gal beta 1-3-GalNAc-R (GlcNAc to GalNAc) beta 1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc. Natl. Acad. Sci. U.S.A. 89:9326-9330.

    PubMed  Google Scholar 

  32. A. Tsuchiya, M. Kanno, T. Kawaguchi, Y. Endo, G. J. Zhang, T. Ohtake, and I. Kimijima (1999). Prognostic Relevance of Tn Expression in Breast Cancer. Breast Cancer 6:175-180.

    PubMed  Google Scholar 

  33. T. Schwientek, J. C. Yeh, S. B. Levery, B. Keck, G. Merkx, A. G. van Kessel, M. Fukuda, and H. Clausen (2000). Control of O-glycan branch formation. Molecular cloning and characterization of a novel thymus-associated core 2 beta1, 6-n-acetylglucosaminyltransferase. J. Biol. Chem. 275:11106-11113.

    PubMed  Google Scholar 

  34. J. C. Yeh, E. Ong, and M. Fukuda (1999). Molecular cloning and expression of a novel beta-1, 6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 274:3215-3221.

    PubMed  Google Scholar 

  35. T. Schwientek, M. Nomoto, S. B. Levery, G. Merkx, A. G. van Kessel, E. P. Bennett, M. A. Hollingsworth, and H. Clausen (1999). Control of O-glycan branch formation. Molecular cloning of human cDNA encoding a novel beta1,6-Nacetylglucosaminyltransferase forming core 2 and core 4. J. Biol. Chem. 274:4504-4512.

    PubMed  Google Scholar 

  36. F.-G. Hanisch, G. Uhlenbruck, J. Peter-Katalinic, H. Egge, J. Dabrowski, and U. Dabrowski (1989). Structures of neutral O-linked polylactosaminoglycans on human skim milk mucins. A novel type of linearly extended poly-N-acetyllactosamine backbones with Gal beta(1-4)GlcNAc beta(1-6) repeating units. J. Biol. Chem. 264:872-883.

    PubMed  Google Scholar 

  37. F-G. Hanisch, J. Peter-Katalinic, H. Egge, U. Dabrowski, and G. Uhlenbruck (1990). Structures of acidic O-linked polylactosaminoglycans on human skim milk mucins. Glycoconj. J. 7:525-543.

    PubMed  Google Scholar 

  38. G. F. Springer, W. A. Fry, P. R. Desai, R. A. Semerdjian, H. Tegtmeyer, C. G. Neybert, and E. F. Scanlon (1985). Further studies on the detection of early lung and breast carcinoma by T antigen. Cancer Detect. Prev. 8:95-100.

    PubMed  Google Scholar 

  39. T. Nakagoe, T. Sawai, T. Tsuji, M. Jibiki, M. Ohbatake, A. Nanashima, H. Yamaguchi, T. Yasutake, H. Ayabe, and K. Arisawa (2000). Prognostic Value of Serum Sialyl Lewis(a), Sialyl Lewis(x) and Sialyl Tn Antigens in Blood from the Tumor DrainageVein of Colorectal Cancer Patients Tumour Biol. 22:115-122.

    Google Scholar 

  40. R. Soares, A. Marinho, and F. Schmitt (1996). Expression of sialyl-Tn in breast cancer. Correlation with prognostic parameters. Pathol. Res. Pract. 192:1181-1186.

    PubMed  Google Scholar 

  41. D. W. Miles, L. C. Happerfield, P. Smith, R. Gillibrand, L. G. Bobrow, W. M. Gregory, and R. D. Rubens (1994). Expression of sialyl-Tn predicts the effect of adjuvant chemotherapy in node-positive breast cancer. Br. J. Cancer 70:1272-1275.

    PubMed  Google Scholar 

  42. Y. Ura, A. S. Dion, C. J. Williams, B. D. Olsen, E. S. Redfield, M. Ishida, M. Herlyn, and P. P. Major (1992). Quantitative dot blot analyses of blood-group-related antigens in paired normal and malignant human breast tissues. Int. J. Cancer 50:57-63.

    PubMed  Google Scholar 

  43. T. Narita, H. Funahashi, Y. Satoh, T. Watanabe, J. Sakamoto, and H. Takagi (1993). Association of expression of blood group-related carbohydrate antigens with prognosis in breast cancer. Cancer 71:3044-3053.

    PubMed  Google Scholar 

  44. R. Sikut, K. Zhang, D. Baeckstrom, and G. C. Hansson (1996). Distinct subpopulations of carcinoma-associated MUC1 mucins as detected by the monoclonal antibody 9H8 and antibodies against the sialyl-Lewis a and sialyl-Lewis x epitopes in the circulation of breast-cancer patients. Int. J. Cancer 66:617-623.

    PubMed  Google Scholar 

  45. M. Demetriou, I. R. Nabi, M. Coppolino, S. Dedhar, and J. W. Dennis (1995). Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J. Cell Biol. 130:383-392.

    PubMed  Google Scholar 

  46. Y. Ikehara, N. Kojima, N. Kurosawa, T. Kudo, M. Kono, S. Nishihara, S. Issiki, K. Morozumi, S. Itzkowitz, T. Tsuda, S. I. Nishimura, S. Tsuji, and H. Narimatsu (1999). Cloning and expression of a human gene encoding an N-acetylgalactosaminealpha2,6-sialyltransferase (ST6GalNAcI):Acandidate for synthesis of cancer-associated sialyl-Tn antigens. Glycobiology 9:1213-1224.

    PubMed  Google Scholar 

  47. M. A. Recchi, M. Hebbar, L. Hornez, A. Harduin-Lepers, J. P. Peyrat, and P. Delannoy (1998). Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res. 58:4066-4070.

    PubMed  Google Scholar 

  48. C. Whitehouse, J. Burchell, S. Gschmeissner, I. Brockhausen, K. O. Lloyd, and J. Taylor-Papadimitriou (1997). A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-Golgi apparatus inhibits the development of core-2-based O-glycans. J. Cell Biol. 137:1229-1241.

    PubMed  Google Scholar 

  49. K. L. Carraway, S. A. Price-Schiavi, M. Komatsu, N. Idris, A. Perez, P. Li, S. Jepson, X. Zhu, M. E. Carvajal, and C. A. Carraway (2000). Multiple facets of sialomucin complex/ MUC4, a membrane mucin and erbb2 ligand, in tumors and tissues (Y2K update). Front. Biosci. 5:D95-D107.

    Google Scholar 

  50. J. P. Peyrat, M. A. Recchi, M. Hebbar, V. Pawlowski, L. Hornez, X. Dong-Lebouhris, H. Hondermarck, A. Harduin-Lepers, and P. Delannoy (2000). Regulation of sialyltransferase expression by estradiol and 4-OH-tamoxifen in the human breast cancer cell MCF-7. Mol. Cell Biol. Res. Commun. 3:48-52.

    PubMed  Google Scholar 

  51. S. von Mensdorff-Pouilly, E. Petrakou, P. Kenemans, K. van Uffelen, A. A. Verstraeten, F. G. Snijdewint, G. J. van Kamp, D. J. Schol, C. A. Reis, M. R. Price, P. O. Livingston, and J. Hilgers (2000). Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetylgalactosamine (GalNAc) peptides. Int. J. Cancer 86:702-712.

    PubMed  Google Scholar 

  52. L. J. Sigal, S. Crotty, R. Andino, and K. L. Rock (1999). Cytotoxic T-cell immunity to virus-infected nonhaematopoietic cells requires presentation of exogenous antigen. Nature 398:77-80.

    PubMed  Google Scholar 

  53. L. Galli-Stampino, E. Meinjohanns, K. Frische, M. Meldal, T. Jensen, O. Werdelin, and S. Mouritsen (1997). T-cell recognition of tumor-associated carbohydrates: The nature of the glycan moiety plays a decisive role in determining glycopeptide immunogenicity. Cancer Res. 57:3214-3222.

    PubMed  Google Scholar 

  54. R. Medzhitov and C. A. Janeway, Jr. (1997). Innate immunity: The virtues of a nonclonal system of recognition. Cell 91:295-298.

    PubMed  Google Scholar 

  55. P. Y. Fung, M. Madej, R. R. Koganty, and B. M. Longenecker (1990). Active specific immunotherapy of a murine mammary adenocarcinoma using a synthetic tumor-associated glycoconjugate. Cancer Res. 50:4308-4314.

    PubMed  Google Scholar 

  56. A. Singhal, M. Fohn, and S. Hakomori (1991). Induction of alpha-N-acetylgalactosamine-O-serine/threonine (Tn) antigen-mediated cellular immune response for active immunotherapy in mice. Cancer Res. 51:1406-1411.

    PubMed  Google Scholar 

  57. G. D. MacLean, D. W. Miles, R. D. Rubens, M. A. Reddish, and B. M. Longenecker (1996). Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. J. Immunother. Emphasis Tumor Immunol. 19:309-316.

    PubMed  Google Scholar 

  58. P. Y. Fung and B. M. Longenecker (1991). Specific immuno-suppressive activity of epiglycanin, a mucin-like glycoprotein secreted by a murine mammary adenocarcinoma (TA3-HA). Cancer Res. 51:1170-1176.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy M. Burchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burchell, J.M., Mungul, A. & Taylor-Papadimitriou, J. O-Linked Glycosylation in the Mammary Gland: Changes that Occur During Malignancy. J Mammary Gland Biol Neoplasia 6, 355–364 (2001). https://doi.org/10.1023/A:1011331809881

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011331809881

Navigation