Skip to main content
Article

The Attenuation of Very Low Frequency Brain Oscillations in Transitions from a Rest State to Active Attention

Published Online:https://doi.org/10.1027/0269-8803.23.4.191

Background: The default mode interference hypothesis (Sonuga-Barke & Castellanos, 2007) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.

References

  • Balduzzi, D. , Riedner, B. A. , Tononi, G. (2008). A BOLD window into brain waves. Proceedings of National Academy of Science, 105, 15641–15642. First citation in articleCrossrefGoogle Scholar

  • Barkley, R. A. , Murphy, K. R. (1998). Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment. New York: Guilford. First citation in articleCrossrefGoogle Scholar

  • Biswal, B. B. , Yetkin, F. Z. , Haughton, V. M. , Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541. First citation in articleCrossrefGoogle Scholar

  • Blakemore, S. (2008). The social brain in adolescence. Nature Neuroscience, 9, 267–277. First citation in articleCrossrefGoogle Scholar

  • Broyd, S. , Demanuele, C. , Debener, S. , Helps, S. , James, C. J. , Sonuga-Barke, E. (2009). Default-mode brain dysfunction in mental disorders: A systematic review. Neuroscience and Biobehavioral Reviews, 33, 279–296. First citation in articleCrossrefGoogle Scholar

  • Buzsáki, G. , Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929. First citation in articleCrossrefGoogle Scholar

  • Castellanos, F. X. , Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nature Reviews Neuroscience, 3, 617–628. First citation in articleCrossrefGoogle Scholar

  • Castellanos, F. X. , Sonuga-Barke, E. J. S. , Scheres, A. , Di Martino, A. , Hyde, C. , Walters, J. R. (2005). Varieties of attention-deficit/hyperactivity disorder-related intraindividual variability. Biological Psychiatry, 57, 1416–1423. First citation in articleCrossrefGoogle Scholar

  • Chen, A. C. N. , Feng, W. , Zhao, H. , Yin, Y. , Wang, P. (2008). EEG default mode network in the human brain: Spectral regional field powers. NeuroImage, 41, 561–574. First citation in articleCrossrefGoogle Scholar

  • Damoiseaux, J. S. , Rombouts, S. A. R. B. , Barkhof, F. , Scheltens, P. , Stam, C. J. , Smith, S. M. et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103, 13848–13853. First citation in articleGoogle Scholar

  • De Luca, M. , Beckmann, C. F. , De Stefano, N. , Matthews, P. M. , Smith, S. M. (2006). fMRI resting state networks define distinct models of long-distance interactions in the human brain. NeuroImage, 29, 1359–1367. First citation in articleCrossrefGoogle Scholar

  • Debener, S. , Makeig, S. , Delorme, A. , Engel, A. K. (2005). What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Cognitive Brain Research, 22, 309–321. First citation in articleCrossrefGoogle Scholar

  • Di Martino, A. , Ghaffari, M. , Curchack, J. , Reiss, P. , Hyde, C. , Vannucci, M. et al. (2008). Decomposing intrasubject variability in children with attention-deficit/hyperactivity disorder. Biological Psychiatry, 64, 607–614. First citation in articleCrossrefGoogle Scholar

  • Eichele, T. , Debener, S. , Calhoun, V. D. , Specht, K. , Engel, A. K. , Hugdahl, K. et al. (2008). Prediction of human errors by maladaptive changes in event-related brain networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 6173–6178. First citation in articleCrossrefGoogle Scholar

  • Fox, M. D. , Snyder, A. Z. , Vincent, J. L. , Corbetta, M. , Van Essen, D. C. , Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678. First citation in articleGoogle Scholar

  • Fox, M. D. , Snyder, A. Z. , Zacks, J. M. , Raichle, M. E. (2006). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature Neuroscience, 9, 23–25. First citation in articleCrossrefGoogle Scholar

  • Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26, 15–29. First citation in articleGoogle Scholar

  • Fransson, P. (2006). How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44, 2836–2845. First citation in articleCrossrefGoogle Scholar

  • Geurts, H. , Grasman, R. P. P. P. , Verté, S. , Oosterlaan, J. , Roeyers, H. , van Kammen, S. M. et al. (2008). Intraindividual variability in ADHD, autism spectrum disorders and Tourette’s syndrome. Neuropsychologia, 46, 3030–3041. First citation in articleCrossrefGoogle Scholar

  • Greicius, M. D. , Krasnow, B. , Reiss, A. L. , Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258. First citation in articleGoogle Scholar

  • Gusnard, D. A. , Akbudak, E. , Shulman, G. L. , Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 4259–4264. First citation in articleCrossrefGoogle Scholar

  • Helps, S. , James, C. , Debener, S. , Karl, A. , Sonuga-Barke, E. J. S. (2008). Very low frequency EEG oscillations and the resting brain in young adults: A preliminary study of localization, stability and association with symptoms of inattention. Journal of Neural Transmission, 115, 279–285. First citation in articleCrossrefGoogle Scholar

  • Hervey, A. S. , Epstein, J. N. , Curry, J. F. , Tonev, S. , Arnold, L. E. , Conners, C. K. et al. (2006). Reaction time distribution analysis of neuropsychological performance in an ADHD sample. Child Neuropsychology, 12, 125–140. First citation in articleCrossrefGoogle Scholar

  • James, C. J. , Hesse, C. W. (2005). Independent component analysis for biomedical signals. Physiological Measurement, 26, 15–39. First citation in articleCrossrefGoogle Scholar

  • Johnson, K. A. , Kelly, S. P. , Bellgrove, M. A. , Barry, E. , Cox, M. , Gill, M. et al. (2007). Response variability in Attention-deficit hyperactivity disorder: Evidence for neuropsychological heterogeneity. Neuropsychologia, 45, 630–638. First citation in articleCrossrefGoogle Scholar

  • Klein, C. , Wendling, K. , Huettner, P. , Ruder, H. , Peper, M. (2006). Intrasubject variability in attention-deficit hyperactivity disorder. Biological Psychiatry, 60, 1088–1097. First citation in articleCrossrefGoogle Scholar

  • McKiernan, K. A. , D’Angelo, B. R. , Kaufman, J. N. , Binder, J. R. (2006). Interrupting the “stream of consciousness”: An fMRI investigation. NeuroImage, 29, 1185–1191. First citation in articleCrossrefGoogle Scholar

  • Monto, S. , Palva, S. , Voipio, J. , Palva, J. M. (2008). Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. The Journal of Neuroscience, 28, 8268–8272. First citation in articleCrossrefGoogle Scholar

  • Penttonen, M. , Buzsáki, G. (2003). Natural logarithmic relationship between brain oscillators. Thalamus & Related Systems, 2, 145–152. First citation in articleGoogle Scholar

  • Raichle, M. E. , MacLeod, A. M. , Snyder, A. Z. , Powers, W. J. , Gusnard, D. A. , Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682. First citation in articleGoogle Scholar

  • Schilbach, L. , Eickhoff, S. B. , Rotarska-Jagiela, A. , Fink, G. R. , Vogeley, K. (2008). Mind at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Consciousness and Cognition, 17, 457–467. First citation in articleCrossrefGoogle Scholar

  • Sonuga-Barke, E. J. S. , Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience and Biobehavioral Reviews, 31, 977–986. First citation in articleGoogle Scholar

  • Taylor, E. A. , Sonuga-Barke, E. J. S. (2008). Disorders of attention and activity. In M. Rutter, D. Bishop, D. Pine, S. Scott, J. S. Stevenson, E. A. Taylor, et al. (Eds.), Rutter’s child and adolescent psychiatry (pp. 521–542). Oxford, UK: Wiley-Blackwell. First citation in articleCrossrefGoogle Scholar

  • Vanhatalo, S. , Palva, J. M. , Holmes, M. D. , Miller, J. W. , Voipio, J. , Kaila, K. (2004). Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proceedings of the National Academy of Sciences of the United States of America, 101, 5053–5057. First citation in articleCrossrefGoogle Scholar

  • Weissman, D. H. , Roberts, K. C. , Visscher, K. M. , Woldorff, M. G. (2006). The neural basis of momentary lapses in attention. Nature Neuroscience, 9, 971–978. First citation in articleCrossrefGoogle Scholar