Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AMPA receptor–PDZ interactions in facilitation of spinal sensory synapses

Abstract

Silent synapses form between some primary sensory afferents and dorsal horn neurons in the spinal cord. Molecular mechanisms for activation or conversion of silent synapses to conducting synapses are unknown. Serotonin can trigger activation of silent synapses in dorsal horn neurons by recruiting AMPA receptors. AMPA-receptor subunits GluR2 and GluR3 interact via their cytoplasmic C termini with PDZ-domain-containing proteins such as GRIP (glutamate receptor interacting protein), but the functional significance of these interactions is unclear. Here we demonstrate that protein interactions involving the GluR2/3 C terminus are important for serotonin-induced activation of silent synapses in the spinal cord. Furthermore, PKC is a necessary and sufficient trigger for this activation. These results implicate AMPA receptor–PDZ interactions in mechanisms underlying sensory synaptic potentiation and provide insights into the pathogenesis of chronic pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of GluR2/3 and GRIP in spinal cord dorsal horn neurons.
Figure 2: GluR2-SVKI and GluR2-SVKE peptides do not affect baseline AMPA receptor-mediated responses in spinal cord dorsal horn neurons.
Figure 3: GluR2-SVKI selectively blocks synaptic facilitation induced by 5-HT.
Figure 4: Postsynaptic PKC activation is necessary and sufficient for synaptic facilitation by 5-HT.
Figure 5: GluR2-SVKI inhibits the activation of silent glutamatergic synapses.

Similar content being viewed by others

References

  1. Craig, A. M. Activity and synaptic receptor targeting: the long view. Neuron 21, 459–462 ( 1998).

    Article  CAS  Google Scholar 

  2. O'Brien, R. J., Lau, L. F. & Huganir, R. L. Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr. Opin. Neurobiol. 8, 364–369 (1998).

    Article  CAS  Google Scholar 

  3. Malenka, R. C. & Nicoll, R. A. Silent synapses speak up. Neuron 19, 473–476 ( 1997).

    Article  CAS  Google Scholar 

  4. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  5. Perl, E. R. in Neurobiology of Nociceptors (eds. Belmonte, C. & Cervero, F.) 5–36 (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  6. Yoshimura, M. & Jessell, T. M. Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurones in the rat spinal cord. J. Physiol. (Lond.) 430, 315– 335 (1990).

    Article  CAS  Google Scholar 

  7. Li, P. et al. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161– 164 (1999).

    Article  CAS  Google Scholar 

  8. Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279– 284 (1997).

    Article  CAS  Google Scholar 

  9. Srivastava, S. et al. Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. Neuron 21, 581–591 (1998).

    Article  CAS  Google Scholar 

  10. Xia, J., Zhang, X., Staudinger, J. & Huganir, R. L. Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 22, 179–187 (1999).

    Article  CAS  Google Scholar 

  11. Sandkühler, J. The organization and function of endogenous antinociceptive systems. Prog. Neurobiol. 50, 49–81 (1996).

    Article  Google Scholar 

  12. Zhuo, M. & Gebhart, G. F. Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J. Neurophysiol. 78, 746–758 (1997).

    Article  CAS  Google Scholar 

  13. Hori, Y., Endo, K. & Takahashi, T. Long-lasting synaptic facilitation induced by serotonin in superficial dorsal horn neurones of the rat spinal cord. J. Physiol. (Lond.) 492, 867–876 (1996).

    Article  CAS  Google Scholar 

  14. Li, P. & Zhuo, M. Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature 393, 695 –698 (1998).

    Article  CAS  Google Scholar 

  15. Calejesan, A. A., Ch'ang, M. H.-C. & Zhuo, M. Spinal serotonergic receptors mediate facilitation of a nociceptive reflex by subcutaneous formalin injection into the hindpaw in rats. Brain Res. 798, 46– 54 (1998).

    Article  CAS  Google Scholar 

  16. Urban, M. O., Jiang, M. C. & Gebhart, G. F. Participation of central descending nociceptive facilitatory systems in secondary hyperalgesia produced by mustard oil. Brain Res. 737, 83–91 ( 1996).

    Article  CAS  Google Scholar 

  17. Yaksh, T. L., Dirksen, R. & Harty, G. J. Antinociceptive effects of intrathecally injected cholinomimetic drugs in the rat and cat. Eur. J. Pharmacol. 117, 81–88 (1985).

    Article  CAS  Google Scholar 

  18. Zhuo, M. & Gebhart, G. F. Tonic cholinergic inhibition of spinal mechanical transmission. Pain 46, 211–222 (1991).

    Article  CAS  Google Scholar 

  19. Malmberg, A. B., Chen, C., Tonegawa, S. & Basbaum, A. I. Preserved acute pain and reduced neuropathic pain in mice lacking PKCγ. Science 278, 279–283 ( 1997).

    Article  CAS  Google Scholar 

  20. Gerber, G., Kangrga, I., Ryu, P. D., Larew, J. S. A. & Randic, M. Multiple effects of phorbol esters in the rat spinal dorsal horn. J. Neurosci. 9, 3606– 3617 (1989).

    Article  CAS  Google Scholar 

  21. Lin, Q., Peng, Y. B. & Willis, W. D. Possible role of protein kinase C in the sensitization of primate spinothalamic tract neurons. J. Neurosci. 16, 3026–3034 (1996).

    Article  CAS  Google Scholar 

  22. Hoyer, D. et al. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol. Rev. 46, 157–203 (1994).

    CAS  PubMed  Google Scholar 

  23. House, C. & Kemp, B. E. Protein kinase C contains a pseudosubstrate prototype in its regulatory domain. Science 238, 1726–1728 (1987).

    Article  CAS  Google Scholar 

  24. Staudinger, J., Lu, J. & Olson E. N. Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha. J. Biol. Chem. 272 , 32019–32024 (1997).

    Article  CAS  Google Scholar 

  25. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 ( 1995).

    Article  CAS  Google Scholar 

  26. Isaac, J. T. R., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427– 434 (1995).

    Article  CAS  Google Scholar 

  27. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71 –75 (1996).

    Article  CAS  Google Scholar 

  28. Wu, G.-Y., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 ( 1996).

    Article  CAS  Google Scholar 

  29. Rumpel, S., Hatt, H. & Gottmann, K. Silent synapses in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. J. Neurosci. 18, 8863–8874 (1998).

    Article  CAS  Google Scholar 

  30. Bardoni, R., Magherini, P. C. & MacDermott, A. B. NMDA EPSCs at glutamatergic synapses in the spinal cord dorsal horn of the postnatal rat. J. Neurosci. 18, 6558–6567 (1998).

    Article  CAS  Google Scholar 

  31. Wall, P. D. The presence of ineffective synapses and the circumstances which unmask them. Phil. Trans. R. Soc. Lond. B Biol. Sci. 278, 361–372 (1977).

    Article  CAS  Google Scholar 

  32. O'Brien, R.J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  Google Scholar 

  33. Harris, J. A., Corsi, M., Quartaroli, M., Arban, R. & Bentivoglio, M. Upregulation of spinal glutamate receptors in chronic pain. Neuroscience 74, 7–12 (1996).

    Article  CAS  Google Scholar 

  34. Carlton, S. M., Hargett, G. L. & Coggeshall, R. E. Plasticity in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits in the rat dorsal horn following deafferentation. Neurosci. Lett. 242, 21–24 (1998).

    Article  CAS  Google Scholar 

  35. Gobel, S. An electron microscopic analysis of the trans-synaptic effects of peripheral nerve injury subsequent to tooth pulp extirpations on neurons in laminae I and II of medullary dorsal horn. J. Neurosci. 4, 2281–2290 (1984).

    Article  CAS  Google Scholar 

  36. Lledo, P.-M., Zhang, X., Sudhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    Article  CAS  Google Scholar 

  37. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 ( 1998).

    Article  CAS  Google Scholar 

  38. Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and α- and β-SNAPs. Neuron 21, 99–110 ( 1998).

    Article  CAS  Google Scholar 

  39. Song, I. et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393– 400 (1998).

    Article  CAS  Google Scholar 

  40. Lin, J. W. & Sheng, M. NSF and AMPA receptors get physical. Neuron 21, 267–270 (1998).

    Article  CAS  Google Scholar 

  41. Popratiloff, A., Weinberg, R. J. & Rustioni, A. AMPA receptor subunits underlying terminals of fine-caliber primary afferent fibers. J. Neurosci. 16, 3363–3372 (1996).

    Article  CAS  Google Scholar 

  42. Tachibana, M., Wenthold, R. J., Morioka, H. & Petralia, R. S. Light and electron microscopic immunocytochemical localization of AMPA-selective glutamate receptors in the rat spinal cord. J. Comp. Neurol. 344, 431–454 (1994).

    Article  CAS  Google Scholar 

  43. Menetrey, D. & Besson, J. M. Electrophysiological characteristics of dorsal horn cells in rats with cutaneous inflammation resulting from chronic arthritis. Pain 13, 343– 364 (1982).

    Article  CAS  Google Scholar 

  44. Hylden, J. L. K., Nahin, R. L., Traub, R. J. & Dubner, R. Expansion of receptive fields of spinal lamina I projection neurons in rats with unilateral adjuvant-induced inflammation: the contribution of dorsal horn mechanisms. Pain 37, 229– 243 (1989).

    Article  CAS  Google Scholar 

  45. Palecek, J. et al. Responses of spinothalamic tract neurons to mechanical and thermal stimuli in an experimental model of peripheral neuropathy in primates. J. Neurophysiol. 68, 1951– 1966 (1992).

    Article  CAS  Google Scholar 

  46. Wyszynski, M., Kim, E., Yang, F. C. & Sheng, M. Biochemical and immunocytochemical characterization of GRIP, a putative AMPA receptor anchoring protein, in rat brain. Neuropharmacology, 37, 1335–1344 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the NIH (NIDA, NINDS, M.Z.; NINDS, J.E.H.; NINDS, M.S.). M.S. is Assistant Investigator of the Howard Hughes Medical Institute. C.S. is a Fellow of the Armenise-Harvard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Kerchner, G., Sala, C. et al. AMPA receptor–PDZ interactions in facilitation of spinal sensory synapses. Nat Neurosci 2, 972–977 (1999). https://doi.org/10.1038/14771

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing