Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan

Abstract

Dystrophin and β-dystroglycan are components of the dystrophin–glycoprotein complex (DGC), a multimolecular assembly that spans the cell membrane and links the actin cytoskeleton to the extracellular basal lamina. Defects in the dystrophin gene are the cause of Duchenne and Becker muscular dystrophies. The C-terminal region of dystrophin binds the cytoplasmic tail of β-dystroglycan, in part through the interaction of its WW domain with a proline-rich motif in the tail of β-dystroglycan. Here we report the crystal structure of this portion of dystrophin in complex with the proline-rich binding site in β-dystroglycan. The structure shows that the dystrophin WW domain is embedded in an adjacent helical region that contains two EF-hand-like domains. The β-dystroglycan peptide binds a composite surface formed by the WW domain and one of these EF-hands. Additionally, the structure reveals striking similarities in the mechanisms of proline recognition employed by WW domains and SH3 domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the dystrophin–β-dystroglycan complex.
Figure 2: Aligned sequences of the dystrophin, and dystrophin related proteins utrophin, DRP2, and dystrobrevin-α.
Figure 3: Stereo views showing the binding mode of Pro residues by the WW domain and comparison to that observed in SH3 domains.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Koenig, M., Monaco, A.P. & Kunkel, L.M. Cell 53, 219– 226 (1988).

    Article  CAS  Google Scholar 

  2. Straub, V. & Campbell, K.P. Curr. Opin. Neurol. 10, 168–175 (1997).

    Article  CAS  Google Scholar 

  3. Tinsley, J.M., Blake, D.J., Zuellig, R.A. & Davies, K.E. Proc. Natl. Acad. Sci. USA 91, 8307– 8313 (1994).

    Article  CAS  Google Scholar 

  4. Koenig, M. et al. Am. J. Hum. Genet. 45, 498– 506 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Roberts, R.G., Bobrow, M. & Bentley, D.R. Proc. Natl. Acad. Sci. USA 89, 2331–2335 (1992).

    Article  CAS  Google Scholar 

  6. Jung, D., Yang, B., Meyer, J., Chamberlain, J.S. & Campbell, K.P. J. Biol. Chem. 270, 27305– 27310 (1995).

    Article  CAS  Google Scholar 

  7. Rentschler, S. et al. Biol. Chem. 380, 431– 442 (1999).

    Article  CAS  Google Scholar 

  8. Sudol, M. Prog. Biophys. Mol. Biol. 65, 113– 132 (1996).

    Article  CAS  Google Scholar 

  9. Kay, B.K., Williamson, M.P. & Sudol, M. FASEB J. 14, 231– 241 (2000).

    Article  CAS  Google Scholar 

  10. Komuro, A., Saeki, M. & Kato, S. J Biol Chem 274, 36513–36519 (1999).

    Article  CAS  Google Scholar 

  11. Chen, H.I. & Sudol, M. Proc. Natl. Acad. Sci. USA 92, 7819–7823 (1995).

    Article  CAS  Google Scholar 

  12. Bedford, M.T., Chan, D.C. & Leder, P. EMBO J. 16, 2376– 2383 (1997).

    Article  CAS  Google Scholar 

  13. Bedford, M.T., Reed, R. & Leder, P. Proc. Natl. Acad. Sci. USA 95, 10602– 10607 (1998).

    Article  CAS  Google Scholar 

  14. Lu, P.J., Zhou, X.Z., Shen, M. & Lu, K.P. Science 283, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  15. Ranganathan, R., Lu, K.P., Hunter, T. & Noel, J.P. Cell 89, 875–886 (1997).

    Article  CAS  Google Scholar 

  16. Macias, M.J. et al. Nature 382, 646–649 (1996).

    Article  CAS  Google Scholar 

  17. Ikura, M. Trends Biochem. Sci. 21, 14–17 (1996).

    Article  CAS  Google Scholar 

  18. de Beer, T., Carter, R.E., Lobel-Rice, K.E., Sorkin, A. & Overduin, M. Science 281, 1357–1360 (1998).

    Article  CAS  Google Scholar 

  19. Meng, W., Sawasdikosol, S., Burakoff, S.J. & Eck, M.J. Nature 398, 84–90 ( 1999).

    Article  CAS  Google Scholar 

  20. Musacchio, A., Saraste, M. & Wilmanns, M. Nature Struct. Biol. 1, 546– 551 (1994).

    Article  CAS  Google Scholar 

  21. Prehoda, K.E., Lee, D.J. & Lim, W.A. Cell 97, 471–480 (1999).

    Article  CAS  Google Scholar 

  22. Fedorov, A.A., Fedorov, E., Gertler, F. & Almo, S.C. Nature Struct. Biol. 6, 661–665 ( 1999).

    Article  CAS  Google Scholar 

  23. Mahoney, N.M., Rozwarski, D.A., Fedorov, E., Fedorov, A.A. & Almo, S.C. Nature Struct. Biol. 6, 666–671 (1999).

    Article  CAS  Google Scholar 

  24. Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. & Noel, J.P. Nature Struct. Biol. 7, 639– 643 (2000).

    Article  CAS  Google Scholar 

  25. Yang, B. et al. J. Biol. Chem. 270, 11711– 11714 (1995).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  27. Collaborative Computational Project Number4. Acta Crystallogr. D 50, 760–776 (1994).

  28. Tong, L. & Rossman, M.G. J. Appl. Crystallogr. 26, 15–21 (1993).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. in Isomorphous replacement and anomalous scattering, Proc. Daresbury Study Weekend, 80–85 (SERC Daresbury Laboratory, Warrington, UK; 1991)

    Google Scholar 

  30. Jones, T.A. & Kjeldgaard, M. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  31. Brunger, A. X-PLOR Version 3.0: a system for crystallography and NMR. (Yale University Press, New Haven; 1992).

    Google Scholar 

  32. Lamzin, V.S. & Wilson, K.S. Methods Enzymol. 277 , 269–305 (1997).

    Article  CAS  Google Scholar 

  33. Nguyen, J.T., Turck, C.W., Cohen, F.E., Zuckermann, R.N. & Lim, W.A. Science 282, 2088– 2092 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Dahl for synthesis and purification of the β-dystroglycan peptide and A. Farooq for help with microcalorimetry measurements. We thank M. Macias for coordinates of the Yap WW domain and for helpful discussions in comparing the structures. This work was supported in part by grants from the NIH (to M.S.), the Muscular Dystrophy Association (to M.J.E. and M.S.), and by the US Department of Energy, Office of Biological and Environmental Research (to A.J. and Rg.Z). M.J.E. is a recipient of a Burroughs-Wellcome Career award in the Biomedical Sciences, and a member of the Harvard-Armenise Center for Structural Biology. Diffraction data were recorded at the Advanced Photon Source at Argonne National Labs, and at CHESS, which is supported by grants from the NIH and NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Eck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Poy, F., Zhang, R. et al. Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan. Nat Struct Mol Biol 7, 634–638 (2000). https://doi.org/10.1038/77923

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing