Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product

Abstract

Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is a short intracellular molecule that is mutated in humans with X-linked lymphoproliferative (XLP) disease. Although the exact role and mechanism of action of SAP are not known, it has the capacity to interact with the cytoplasmic region of SLAM and other related immune cell receptors. As SAP is composed almost exclusively of a Src homology 2 (SH2) domain, it has been proposed that it functions as a natural blocker of SH2 domain–mediated interactions. We report here that the SLAM receptor is capable of triggering a protein tyrosine phosphorylation signal in T cells via a mechanism that is strictly dependent on SAP expression. This signal involves the SH2 domain–containing inositol phosphatase (SHIP); the adaptor molecules Dok2, Dok1 and Shc; and Ras GTPase–activating protein RasGAP. SAP is essential for this pathway because it facilitates the selective recruitment and activation of the Src-related protein tyrosine kinase FynT. We also show that signaling via the SLAM-SAP pathway in an established T cell line can alter the profile of cytokine production during T cell activation. These findings identify a mechanism by which a putative adaptor molecule is required for receptor-mediated signaling events in the immune system. They also provide insights into the pathophysiology of a severe human lymphoproliferative disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SAP is required for SLAM-induced intracellular protein tyrosine phosphorylation in T cells.
Figure 2: Molecular characterization of the SLAM-induced protein tyrosine phosphorylation signal.
Figure 3: The second and third tyrosines in the cytoplasmic region of SLAM are required for SAP-dependent intracellular protein tyrosine phosphorylation.
Figure 4: SAP functions by recruiting a putative protein tyrosine kinase, rather than displacing a protein tyrosine phosphatase activity.
Figure 5: SAP-dependent physical and functional association of SLAM with the Src-related protein tyrosine kinase FynT.
Figure 6: SLAM-SAP signaling inhibits antigen receptor–mediated production of IFN-γ, but not IL-2, in BI-141 T cells.

Similar content being viewed by others

References

  1. Morra, M. et al. X-linked lymphoproliferative disease: a progressive immunodeficiency. Annu. Rev. Immunol. 19, 657–682 (2001).

    CAS  PubMed  Google Scholar 

  2. Schuster, V. & Kreth, H. W. X-linked lymphoproliferative disease is caused by deficiency of a novel SH2 domain-containing signal transduction adaptor protein. Immunol. Rev. 178, 21–28 (2000).

    CAS  PubMed  Google Scholar 

  3. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    CAS  PubMed  Google Scholar 

  4. Nichols, K. E. et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc. Natl Acad. Sci. USA 95, 13765–13770 (1998).

    CAS  PubMed  Google Scholar 

  5. Coffey, A. J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nature Genet. 20, 129–135 (1998).

    CAS  PubMed  Google Scholar 

  6. Wu, C. et al. SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nature Immunol. 2, 410–414 (2001).

    CAS  Google Scholar 

  7. Cocks, B. G. et al. A novel receptor involved in T cell activation. Nature 376, 260–263 (1995).

    CAS  PubMed  Google Scholar 

  8. Mavaddat, N. et al. Signaling lymphocytic activation molecule (CDw150) is homophilic but self-associates with very low affinity. J. Biol. Chem. 275, 28100–28109 (2000).

    CAS  PubMed  Google Scholar 

  9. Castro, A. G. et al. Molecular and functional characterization of mouse signaling lymphocytic activation molecule (SLAM): differential expression and responsiveness in TH1 and TH2 cells. J. Immunol. 163, 5860–5870 (1999).

    CAS  PubMed  Google Scholar 

  10. Aversa, G., Chang, C. C., Carballido, J. M., Cocks, B. G. & de Vries, J. E. Engagement of the signaling lymphocytic activation molecule (SLAM) on activated T cells results in IL-2-independent, cyclosporin A-sensitive T cell proliferation and IFN-γ production. J. Immunol. 158, 4036–4044 (1997).

    CAS  PubMed  Google Scholar 

  11. Sayos, J. et al. Potential pathways for regulation of NK and T cell responses: differential X-linked lymphoproliferative syndrome gene product SAP interactions with SLAM and 2B4. Int. Immunol. 12, 1749–1757 (2000).

    CAS  PubMed  Google Scholar 

  12. Nakajima, H. et al. Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur. J. Immunol. 30, 3309–3318 (2000).

    CAS  PubMed  Google Scholar 

  13. Tangye, S. G., Phillips, J. H., Lanier, L. L. & Nichols, K. E. Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J. Immunol. 165, 2932–2936 (2000).

    CAS  PubMed  Google Scholar 

  14. Parolini, S. et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J. Exp. Med. 192, 337–346 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakajima, H. & Colonna, M. 2B4: an NK cell activating receptor with unique specificity and signal transduction mechanism. Hum. Immunol. 61, 39–43 (2000).

    CAS  PubMed  Google Scholar 

  16. Tangye, S. G. et al. Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J. Immunol. 162, 6981–6985 (1999).

    CAS  PubMed  Google Scholar 

  17. Li, S. C. et al. Novel mode of ligand binding by the SH2 domain of the human XLP disease gene product SAP/SH2D1A. Curr. Biol. 9, 1355–1362 (1999).

    CAS  PubMed  Google Scholar 

  18. Poy, F. et al. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol. Cell 4, 555–561 (1999).

    CAS  PubMed  Google Scholar 

  19. Mikhalap, S. V. et al. CDw150 associates with src-homology 2-containing inositol phosphatase and modulates CD95-mediated apoptosis. J. Immunol. 162, 5719–5727 (1999).

    CAS  PubMed  Google Scholar 

  20. Lemay, S., Davidson, D., Latour, S. & Veillette, A. Dok-3, a novel adapter molecule involved in the negative regulation of immunoreceptor signaling. Mol. Cell. Biol. 20, 2743–2754 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tamir, I. et al. The RasGAP-binding protein p62dok is a mediator of inhibitory FcγRIIB signals in B cells. Immunity 12, 347–358 (2000).

    CAS  PubMed  Google Scholar 

  22. Suzu, S. et al. p56(dok-2) as a cytokine-inducible inhibitor of cell proliferation and signal transduction. EMBO J. 19, 5114–5122 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamanashi, Y. & Baltimore, D. Identification of the Abl- and rasGAP-associated 62 kD protein as a docking protein, Dok. Cell 88, 205–211 (1997).

    CAS  PubMed  Google Scholar 

  24. Carpino, N. et al. p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 88, 197–204 (1997).

    CAS  PubMed  Google Scholar 

  25. Di Cristofano, A. et al. Molecular cloning and characterization of p56dok-2 defines a new family of RasGAP-binding proteins. J. Biol. Chem. 273, 4827–4830 (1998).

    CAS  PubMed  Google Scholar 

  26. Helgason, C. D. et al. Targeted disruption of SHIP leads to hematopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 12, 1610–1620 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cooke, M. P. & Perlmutter, R. M. Expression of a novel form of the fyn proto-oncogene in hematopoietic cells. New Biol. 1, 66–74 (1989).

    CAS  PubMed  Google Scholar 

  28. Davidson, D., Chow, L. M., Fournel, M. & Veillette, A. Differential regulation of T cell antigen responsiveness by isoforms of the src-related tyrosine protein kinase p59fyn. J. Exp. Med. 175, 1483–1492 (1992).

    CAS  PubMed  Google Scholar 

  29. Chow, L. M. & Veillette, A. The Src and Csk families of tyrosine protein kinases in hematopoietic cells. Semin. Immunol. 7, 207–226 (1995).

    CAS  PubMed  Google Scholar 

  30. Stein, P. L., Lee, H. M., Rich, S. & Soriano, P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741–750 (1992).

    CAS  PubMed  Google Scholar 

  31. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    CAS  PubMed  Google Scholar 

  32. Liu, Q. et al. The inositol polyphosphate 5-phosphatase ship is a crucial negative regulator of B cell antigen receptor signaling. J. Exp. Med. 188, 1333–1342 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamanashi, Y. et al. Role of the rasGAP-associated docking protein p62(dok) in negative regulation of B cell receptor-mediated signaling. Genes Dev. 14, 11–16 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, W. C., Collette, Y., Nunes, J. A. & Olive, D. Tec kinases: a family with multiple roles in immunity. Immunity. 12, 373–382 (2000).

    CAS  PubMed  Google Scholar 

  35. Kane, L. P., Andres, P. G., Howland, K. C., Abbas, A. K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nature Immunol. 2, 37–44 (2001).

    CAS  Google Scholar 

  36. Kane, L. P., Shapiro, V. S., Stokoe, D. & Weiss, A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol 9, 601–604 (1999).

    CAS  PubMed  Google Scholar 

  37. Miceli, M. C. & Parnes, J. R. The roles of CD4 and CD8 in T cell activation. Semin. Immunol. 3, 133–141 (1991).

    CAS  PubMed  Google Scholar 

  38. Thompson, A. D. et al. EAT-2 is a novel SH2 domain containing protein that is up regulated by Ewing's sarcoma EWS/FLI1 fusion gene. Oncogene 13, 2649–2658 (1996).

    CAS  PubMed  Google Scholar 

  39. Abraham, N., Miceli, M. C., Parnes, J. R. & Veillette, A. Enhancement of T cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature 350, 62–66 (1991).

    CAS  PubMed  Google Scholar 

  40. Latour, S., Fournel, M. & Veillette, A. Regulation of T cell antigen receptor signaling by Syk tyrosine protein kinase. Mol. Cell. Biol. 17, 4434–4441 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rubin, L. A., Kurman, C. C., Biddison, W. E., Goldman, N. D. & Nelson, D. L. A monoclonal antibody 7G7/B6, binds to an epitope on the human interleukin-2 (IL-2) receptor that is distinct from that recognized by IL-2 or anti-Tac. Hybridoma 4, 91–102 (1985).

    CAS  PubMed  Google Scholar 

  42. Leo, O., Foo, M., Sachs, D. H., Samelson, L. E. & Bluestone, J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc. Natl. Acad. Sci. USA 84, 1374–1378 (1987).

    CAS  PubMed  Google Scholar 

  43. Wilde, D. B., Marrack, P., Kappler, J., Dialynas, D. P. & Fitch, F. W. Evidence implicating L3T4 in class II MHC antigen reactivity; monoclonal antibody GK1.5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation, release of lymphokines, and binding by cloned murine helper T lymphoctyes lines. J. Immunol. 131, 2178–2183 (1983).

    CAS  PubMed  Google Scholar 

  44. Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301–308 (1988).

    CAS  PubMed  Google Scholar 

  45. Gervais, F. G., Chow, L. M., Lee, J. M., Branton, P. E. & Veillette, A. The SH2 domain is required for stable phosphorylation of p56lck at tyrosine 505, the negative regulatory site. Mol. Cell. Biol. 13, 7112–7121 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Peri, K. G. et al. Interactions of the SH2 domain of lymphocyte-specific tyrosine protein kinase p56lck with phosphotyrosine-containing proteins. Oncogene 8, 2765–2772 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Veillette laboratory, M. Nemer and A. Fischer for critical comments on the manuscript and I. Gamache and X. Shi for technical help. Supported by grants from the National Cancer Institute of Canada, the CANVAC National Centre of Excellence and the Canadian Institutes of Health Research (to A. V.), the Institut National de la Santé et de la Recherche Médicale and the Association pour la Recherche sur le Cancer (France) (to S. L.) and the National Cancer Institute of Canada (to R. K. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Veillette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latour, S., Gish, G., Helgason, C. et al. Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nat Immunol 2, 681–690 (2001). https://doi.org/10.1038/90615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing