Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential transcriptomic and metabolic profiles of M. africanum- and M. tuberculosis-infected patients after, but not before, drug treatment

Abstract

The epidemiology of Mycobacterium tuberculosis (Mtb) and M. africanum (Maf) suggests differences in their virulence, but the host immune profile to better understand the pathogenesis of tuberculosis (TB) have not been studied. We compared the transcriptomic and metabolic profiles between Mtb- and Maf-infected TB cases to identify host biomarkers associated with lineages-specific pathogenesis and response to anti-TB chemotherapy. Venous blood samples from Mtb- and Maf-infected patients obtained before and after anti-TB treatment were analyzed for cell composition, gene expression and metabolic profiles. Prior to treatment, similar transcriptomic profiles were seen in Maf- and Mtb-infected patients. In contrast, post treatment, over 1600 genes related to immune responses and metabolic diseases were differentially expressed between the groups. Notably, the upstream regulator hepatocyte nuclear factor 4-alpha (HNF4α), which regulated 15% of these genes, was markedly enriched. Serum metabolic profiles were similar in both group pre-treatment, but the decline in pro-inflammatory metabolites post treatment were most pronounced in Mtb-infected patients. Together, the differences in both peripheral blood transcriptomic and serum metabolic profiles between Maf- and Mtb-infected patients observed over the treatment period, might be indicative of intrinsic host factors related to susceptibility to TB and/or differential efficacy of the standard anti-TB treatment on the two lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Gagneux S . Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci 2012; 367: 850–859.

    Article  CAS  Google Scholar 

  2. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 2010; 42: 498–503.

    Article  CAS  Google Scholar 

  3. Niemann S, Kubica T, Bange FC, Adjei O, Browne EN, Chinbuah MA et al. The species Mycobacterium africanum in the light of new molecular markers. J Clin Microbiol 2004; 42: 3958–3962.

    Article  CAS  Google Scholar 

  4. de Jong BC, Adetifa I, Walther B, Hill PC, Antonio M, Ota M et al. Differences between tuberculosis cases infected with Mycobacterium africanum, West African type 2, relative to Euro-American Mycobacterium tuberculosis: an update. FEMS Immunol Med Microbiol 2010; 58: 102–105.

    Article  CAS  Google Scholar 

  5. Via LE, Weiner DM, Schimel D, Lin PL, Dayao E, Tankersley SL et al. Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus). Infect Immun 2013; 81: 2909–2919.

    Article  CAS  Google Scholar 

  6. Bentley SD, Comas I, Bryant JM, Walker D, Smith NH, Harris SR et al. The genome of Mycobacterium africanum West African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis complex. PLoS Negl Trop Dis 2012; 6: e1552.

    Article  CAS  Google Scholar 

  7. Bold TD, Davis DC, Penberthy KK, Cox LM, Ernst JD, de Jong BC . Impaired fitness of Mycobacterium africanum despite secretion of ESAT-6. J Infect Dis 2012; 205: 984–990.

    Article  CAS  Google Scholar 

  8. Gehre F, Otu J, DeRiemer K, de Sessions PF, Hibberd ML, Mulders W et al. Deciphering the growth behaviour of Mycobacterium africanum. PLoS Negl Trop Dis 2013; 7: e2220.

    Article  CAS  Google Scholar 

  9. Varahram M, Farnia P, Nasiri MJ, Karahrudi MA, Dizagie MK, Velayati AA . Association of mycobacterium tuberculosis lineages with IFN-gamma and TNF-alpha gene polymorphisms among pulmonary tuberculosis patient. Mediterr J Hematol Infect Dis 2014; 6: e2014015.

    Article  Google Scholar 

  10. Portevin D, Gagneux S, Comas I, Young D . Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog 2011; 7: e1001307.

    Article  CAS  Google Scholar 

  11. Wang C, Peyron P, Mestre O, Kaplan G, van Soolingen D, Gao Q et al. Innate immune response to Mycobacterium tuberculosis Beijing and other genotypes. PLoS One 2010; 5: e13594.

    Article  Google Scholar 

  12. Coussens AK, Wilkinson RJ, Nikolayevskyy V, Elkington PT, Hanifa Y, Islam K et al. Ethnic variation in inflammatory profile in tuberculosis. PLoS Pathog 2013; 9: e1003468.

    Article  CAS  Google Scholar 

  13. Pareek M, Evans J, Innes J, Smith G, Hingley-Wilson S, Lougheed KE et al. Ethnicity and mycobacterial lineage as determinants of tuberculosis disease phenotype. Thorax 2013; 68: 221–229.

    Article  Google Scholar 

  14. Click ES, Winston CA, Oeltmann JE, Moonan PK, Mac Kenzie WR . Association between Mycobacterium tuberculosis lineage and time to sputum culture conversion. Int J Tuberc Lung Dis 2013; 17: 878–884.

    Article  CAS  Google Scholar 

  15. Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 2013; 45: 784–790.

    Article  CAS  Google Scholar 

  16. Gumbo T . Biological variability and the emergence of multidrug-resistant tuberculosis. Nat Genet 2013; 45: 720–721.

    Article  CAS  Google Scholar 

  17. Tientcheu LD, Sutherland JS, de Jong BC, Kampmann B, Jafali J, Adetifa IM et al. Differences in T-cell responses between Mycobacterium tuberculosis and Mycobacterium africanum-infected patients. Eur J Immunol 2014; 44: 1387–1398.

    Article  CAS  Google Scholar 

  18. Weiner J, Maertzdorf J, Kaufmann SH . The dual role of biomarkers for understanding basic principles and devising novel intervention strategies in tuberculosis. Ann NY Acad Sci 2013; 1283: 22–29.

    Article  Google Scholar 

  19. Bloom CI, Graham CM, Berry MP, Wilkinson KA, Oni T, Rozakeas F et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS One 2012; 7: e46191.

    Article  CAS  Google Scholar 

  20. Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell CM, Chagaluka G et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med 2014; 370: 1712–1723.

    Article  CAS  Google Scholar 

  21. Kaforou M, Wright VJ, Oni T, French N, Bangani N, Banwell CM et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med 2013; 10: e1001538.

    Article  Google Scholar 

  22. Maertzdorf J, Weiner J 3rd, Mollenkopf HJ, Network TB, Bauer T, Prasse A et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci USA 2012; 109: 7853–7858.

    Article  CAS  Google Scholar 

  23. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010; 466: 973–977.

    Article  CAS  Google Scholar 

  24. Maertzdorf J, Ota M, Repsilber D, Mollenkopf HJ, Weiner J, Hill PC et al. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PLoS One 2011; 6: e26938.

    Article  CAS  Google Scholar 

  25. Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T, Black G et al. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun 2011; 12: 15–22.

    Article  CAS  Google Scholar 

  26. Cliff JM, Lee JS, Constantinou N, Cho JE, Clark TG, Ronacher K et al. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis 2013; 207: 18–29.

    Article  CAS  Google Scholar 

  27. Joosten SA, Goeman JJ, Sutherland JS, Opmeer L, de Boer KG, Jacobsen M et al. Identification of biomarkers for tuberculosis disease using a novel dual-color RT-MLPA assay. Genes Immun 2012; 13: 71–82.

    Article  CAS  Google Scholar 

  28. Hwang-Verslues WW, Sladek FM . HNF4alpha—role in drug metabolism and potential drug target? Current opinion in pharmacology 2010; 10: 698–705.

    Article  CAS  Google Scholar 

  29. Babeu JP, Boudreau F . Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory networks. World J Gastroenterol 2014; 20: 22–30.

    Article  CAS  Google Scholar 

  30. Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ . Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 2001; 21: 1393–1403.

    Article  CAS  Google Scholar 

  31. Jimenez-Corona ME, Cruz-Hervert LP, Garcia-Garcia L, Ferreyra-Reyes L, Delgado-Sanchez G, Bobadilla-Del-Valle M et al. Association of diabetes and tuberculosis: impact on treatment and post-treatment outcomes. Thorax 2013; 68: 214–220.

    Article  Google Scholar 

  32. Restrepo BI, Schlesinger LS . Impact of diabetes on the natural history of tuberculosis. Diabetes Res Clin Pract 2014; 106: 191–199.

    Article  Google Scholar 

  33. Mohlke KL, Boehnke M . The role of HNF4A variants in the risk of type 2 diabetes. Curr Diab Rep 2005; 5: 149–156.

    Article  CAS  Google Scholar 

  34. Jafar-Mohammadi B, Groves CJ, Gjesing AP, Herrera BM, Winckler W, Stringham HM et al. A role for coding functional variants in HNF4A in type 2 diabetes susceptibility. Diabetologia 2011; 54: 111–119.

    Article  CAS  Google Scholar 

  35. Crestani M, De Fabiani E, Caruso D, Mitro N, Gilardi F, Vigil Chacon AB et al. LXR (liver X receptor) and HNF-4 (hepatocyte nuclear factor-4): key regulators in reverse cholesterol transport. Biochem Soc Trans 2004; 32: 92–96.

    Article  CAS  Google Scholar 

  36. Korf H, Vander Beken S, Romano M, Steffensen KR, Stijlemans B, Gustafsson JA et al. Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J Clin Invest 2009; 119: 1626–1637.

    Article  CAS  Google Scholar 

  37. Han M, Liang L, Liu LR, Yue J, Zhao YL, Xiao HP . Liver X receptor gene polymorphisms in tuberculosis: effect on susceptibility. PLoS One 2014; 9: e95954.

    Article  Google Scholar 

  38. Weiner J 3rd, Parida SK, Maertzdorf J, Black GF, Repsilber D, Telaar A et al. Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS One 2012; 7: e40221.

    Article  CAS  Google Scholar 

  39. Suzuki Y, Suda T, Asada K, Miwa S, Suzuki M, Fujie M et al. Serum indoleamine 2,3-dioxygenase activity predicts prognosis of pulmonary tuberculosis. Clin Vaccine Immunol 2012; 19: 436–442.

    Article  CAS  Google Scholar 

  40. Blumenthal A, Nagalingam G, Huch JH, Walker L, Guillemin GJ, Smythe GA et al. M. tuberculosis induces potent activation of IDO-1, but this is not essential for the immunological control of infection. PLoS One 2012; 7: e37314.

    Article  CAS  Google Scholar 

  41. Sedlmayr P, Blaschitz A, Stocker R . The role of placental tryptophan catabolism. Front Immunol 2014; 5: 230.

    Article  Google Scholar 

  42. Renko M, Valkonen P, Tapiainen T, Kontiokari T, Mattila P, Knuuttila M et al. Xylitol-supplemented nutrition enhances bacterial killing and prolongs survival of rats in experimental pneumococcal sepsis. BMC Microbiol 2008; 8: 45.

    Article  Google Scholar 

  43. Yin SY, Kim HJ, Kim HJ . Protective effect of dietary xylitol on influenza A virus infection. PLoS One 2014; 9: e84633.

    Article  Google Scholar 

  44. Ammons MC, Copie V . Mini-review: Lactoferrin: a bioinspired, anti-biofilm therapeutic. Biofouling 2013; 29: 443–455.

    Article  CAS  Google Scholar 

  45. de Jong BC, Hill PC, Aiken A, Jeffries DJ, Onipede A, Small PM et al. Clinical presentation and outcome of tuberculosis patients infected by M. africanum versus M. tuberculosis. Int J Tuberc Lung Dis 2007; 11: 450–456.

    CAS  PubMed  Google Scholar 

  46. de Jong BC, Antonio M, Awine T, Ogungbemi K, de Jong YP, Gagneux S et al. Use of spoligotyping and large sequence polymorphisms to study the population structure of the Mycobacterium tuberculosis complex in a cohort study of consecutive smear-positive tuberculosis cases in The Gambia. J Clin Microbiol 2009; 47: 994–1001.

    Article  CAS  Google Scholar 

  47. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E . Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 2009; 81: 6656–6667.

    Article  CAS  Google Scholar 

  48. Smyth GK . Limma: linear models for microarray data. In: Gentleman R, Carey V, Irizarry R, Dudoit S, Huber W (eds). Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer: NY, USA, 2005; pp 397–420.

    Chapter  Google Scholar 

  49. Liaw AWM . Classification and regression by random-forest. R News 2002; 2: 18–22.

    Google Scholar 

Download references

Acknowledgements

We thank the Gambian National Leprosy and Tuberculosis Programme for their continuing collaboration. We are also grateful to study participants, field workers, especially K Kanyi and O Ceesay for performing sample collection, MRC TB clinical staff and P Camara for obtaining consent and enrolling participants, TB immunology and TB diagnostic laboratory staff, and M Antonio, P Owiafe, A Bojang, J Mendy, M Daramy, J Otu and F Mendy for laboratory assistance. We also thank T Togun for clinical examination of study patients and ML Grossman for editorial support. Finally, we thank Metabolon Inc. for generating the metabolic profiles. The study was funded by the MRC Unit, The Gambia as a PhD fellowship awarded to LDT, the European Commission Advanced Immunization Technologies (ADITEC) Grant FP7-HEALTH-2011-280873, and the Max Planck Institute for Infection Biology in Berlin, Germany.

Author contributions

MOO, SHEK, LDT, HMD and JM conceived and designed the experiments. HJM, LDT and JM performed laboratory analysis. LDT, JM and JW performed statistical analysis. SD, MOO and IMA collected epidemiology and clinical information. SHEK, BK, JW and MOO contributed reagents/materials/analysis tools. All authors LDT, JM, BK, JSS, HMD, SHEK and MOO wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L D Tientcheu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tientcheu, L., Maertzdorf, J., Weiner, J. et al. Differential transcriptomic and metabolic profiles of M. africanum- and M. tuberculosis-infected patients after, but not before, drug treatment. Genes Immun 16, 347–355 (2015). https://doi.org/10.1038/gene.2015.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.21

This article is cited by

Search

Quick links