Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pinhole micro-SPECT/CT for noninvasive monitoring and quantitation of oncolytic virus dispersion and percent infection in solid tumors

Abstract

The purpose of our study was to validate the ability of pinhole micro-single-photon emission computed tomography/computed tomography (SPECT/CT) to: 1) accurately resolve the intratumoral dispersion pattern and 2) quantify the infection percentage in solid tumors of an oncolytic measles virus encoding the human sodium iodide symporter (MV-NIS). Sodium iodide symporter (NIS) RNA level and dispersion pattern were determined in control and MV-NIS-infected BxPC-3 pancreatic tumor cells and mouse xenografts using quantitative, real-time, reverse transcriptase, polymerase chain reaction, autoradiography and immunohistochemistry (IHC). Mice with BxPC-3 xenografts were imaged with 123I or 99TcO4 micro-SPECT/CT. Tumor dimensions and radionuclide localization were determined with imaging software. Linear regression and correlation analyses were performed to determine the relationship between tumor infection percentage and radionuclide uptake (% injected dose per gram) above background and a highly significant correlation was observed (r2=0.947). A detection threshold of 1.5-fold above the control tumor uptake (background) yielded a sensitivity of 2.7% MV-NIS-infected tumor cells. We reliably resolved multiple distinct intratumoral zones of infection from non-infected regions. Pinhole micro-SPECT/CT imaging using the NIS reporter demonstrated precise localization and quantitation of oncolytic MV-NIS infection, and can replace more time-consuming and expensive analyses (for example, autoradiography and IHC) that require animal killing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Barton KN, Tyson D, Stricker H, Lew YS, Heisey G, Koul S et al. GENIS: gene expression of sodium iodide symporter for noninvasive imaging of gene therapy vectors and quantification of gene expression in vivo. Mol Ther 2003; 8: 508–518.

    Article  CAS  Google Scholar 

  2. Barton KN, Stricker H, Brown SL, Elshaikh M, Aref I, Lu M et al. Phase I study of noninvasive imaging of adenovirus-mediated gene expression in the human prostate. Mol Ther 2008; 16: 1761–1769.

    Article  CAS  Google Scholar 

  3. Boland A, Ricard M, Opolon P, Bidart JM, Yeh P, Filetti S et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 2000; 60: 3484–3492.

    CAS  PubMed  Google Scholar 

  4. Spitzweg C, O’Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC . Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 2000; 60: 6526–6530.

    CAS  PubMed  Google Scholar 

  5. Goel A, Carlson SK, Classic KL, Greiner S, Naik S, Power AT et al. Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV(Delta51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood 2007; 110: 2342–2350.

    Article  CAS  Google Scholar 

  6. Dingli D, Peng KW, Harvey ME, Greipp PR, O’Connor MK, Cattaneo R et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004; 103: 1641–1646.

    Article  CAS  Google Scholar 

  7. Dai G, Levy O, Carrasco N . Cloning and characterization of the thyroid iodide transporter. Nature 1996; 379: 458–460.

    Article  CAS  Google Scholar 

  8. Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N . Thyroid Na+/I- symporter. Mechanism, stoichiometry, and specificity. J Biol Chem 1997; 272: 27230–27238.

    Article  CAS  Google Scholar 

  9. Van Sande J . Anion selectivity by the sodium iodide symporter. Endocrinology 2003; 144: 247–252.

    Article  CAS  Google Scholar 

  10. Zuckier LS, Dohan O, Li Y, Chang CJ, Carrasco N, Dadachova E . Kinetics of perrhenate uptake and comparative biodistribution of perrhenate, pertechnetate, and iodide by NaI symporter-expressing tissues in vivo. J Nucl Med 2004; 45: 500–507.

    CAS  PubMed  Google Scholar 

  11. Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C et al. Rescue of measles viruses from cloned DNA. Embo J 1995; 14: 5773–5784.

    Article  CAS  Google Scholar 

  12. Combredet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B et al. A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 2003; 77: 11546–11554.

    Article  CAS  Google Scholar 

  13. Penheiter AR, Wegman TR, Classic KL, Dingli D, Bender CE, Russell SJ et al. Sodium iodide symporter (NIS)-mediated radiovirotherapy for pancreatic cancer. AJR Am J Roentgenol 2010; 195: 341–349.

    Article  Google Scholar 

  14. Jauregui-Osoro M, Sunassee K, Weeks AJ, Berry DJ, Paul RL, Cleij M et al. Synthesis and biological evaluation of [(18)F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter. Eur J Nucl Med Mol Imaging 2010; 37: 2108–2116.

    Article  CAS  Google Scholar 

  15. Weeks AJ, Jauregui-Osoro M, Cleij M, Blower JE, Ballinger JR, Blower PJ . Evaluation of [18F]-tetrafluoroborate as a potential PET imaging agent for the human sodium/iodide symporter in a new colon carcinoma cell line, HCT116, expressing hNIS. Nucl Med Commun 2011; 32: 98–105.

    Article  CAS  Google Scholar 

  16. Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Reader AJ, Vassaux G . Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther 2004; 9: 436–442.

    Article  CAS  Google Scholar 

  17. Niu G, Krager KJ, Graham MM, Hichwa RD, Domann FE . Noninvasive radiological imaging of pulmonary gene transfer and expression using the human sodium iodide symporter. Eur J Nucl Med Mol Imaging 2005; 32: 534–540.

    Article  CAS  Google Scholar 

  18. Dingli D, Kemp BJ, O’Connor MK, Morris JC, Russell SJ, Lowe VJ . Combined I-124 positron emission tomography/computed tomography imaging of NIS gene expression in animal models of stably transfected and intravenously transfected tumor. Mol Imaging Biol 2006; 8: 16–23.

    Article  Google Scholar 

  19. Haddad D, Chen NG, Zhang Q, Chen CH, Yu YA, Gonzalez L et al. Insertion of the human sodium iodide symporter to facilitate deep tissue imaging does not alter oncolytic or replication capability of a novel vaccinia virus. J Transl Med 2011; 9: 36.

    Article  CAS  Google Scholar 

  20. Biersack HJ, Freeman LM . Clin Nucl Med. Springer, Berlin; New York, 2007.

    Book  Google Scholar 

  21. van der Have F, Vastenhouw B, Ramakers RM, Branderhorst W, Krah JO, Ji C et al. U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med 2009; 50: 599–605.

    Article  Google Scholar 

  22. Wu C, van der Have F, Vastenhouw B, Dierckx RA, Paans AM, Beekman FJ . Absolute quantitative total-body small-animal SPECT with focusing pinholes. Eur J Nucl Med Mol Imaging 2010; 37: 2127–2135.

    Article  Google Scholar 

  23. Sharma S, Ebadi M . SPECT neuroimaging in translational research of CNS disorders. Neurochem Int 2008; 52: 352–362.

    Article  CAS  Google Scholar 

  24. Dingli D, Bergert ER, Bajzer Z, O’Connor MK, Russell SJ, Morris JC . Dynamic iodide trapping by tumor cells expressing the thyroidal sodium iodide symporter. Biochem Biophys Res Commun 2004; 325: 157–166.

    Article  CAS  Google Scholar 

  25. Hasegawa K, Pham L, O’Connor MK, Federspiel MJ, Russell SJ, Peng KW . Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res 2006; 12: 1868–1875.

    Article  CAS  Google Scholar 

  26. Carlson SK, Classic KL, Hadac EM, Bender CE, Kemp BJ, Lowe VJ et al. In vivo quantitation of intratumoral radioisotope uptake using micro-single photon emission computed tomography/computed tomography. Mol Imaging Biol 2006; 8: 324–332.

    Article  Google Scholar 

  27. Myers RM, Greiner SM, Harvey ME, Griesmann G, Kuffel MJ, Buhrow SA et al. Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin Pharmacol Ther 2007; 82: 700–710.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our nuclear medicine technologist, Teresa D. Decklever (Mayo Clinic), for technical expertise and imaging assistance. This work was supported by the National Cancer Institute (Grant K08 CA103859, Grant P50 CA102701 and Grant R01 CA 125614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Carlson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penheiter, A., Griesmann, G., Federspiel, M. et al. Pinhole micro-SPECT/CT for noninvasive monitoring and quantitation of oncolytic virus dispersion and percent infection in solid tumors. Gene Ther 19, 279–287 (2012). https://doi.org/10.1038/gt.2011.107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.107

Keywords

This article is cited by

Search

Quick links