Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cancer targeting Gene-Viro-Therapy of liver carcinoma by dual-regulated oncolytic adenovirus armed with TRAIL gene

Abstract

Liver cancer is a common and aggressive malignancy, but available treatment approaches remain suboptimal. Cancer targeting Gene-Viro-Therapy (CTGVT) has shown excellent anti-tumor effects in a preclinical study. CTGVT takes advantage of both gene therapy and virotherapy by incorporating an anti-tumor gene into an oncolytic virus vector. Potent anti-tumor activity is achieved by virus replication and exogenous expression of the anti-tumor gene. A dual-regulated oncolytic adenoviral vector designated Ad·AFP·E1A·E1B (Δ55) (Ad·AFP·D55 for short thereafter) was constructed by replacing the native viral E1A promoter with the simian virus 40 enhancer/α-fetoprotein (AFP) composite promoter (AFPep) based on an E1B-55K-deleted construct, ZD55. Ad·AFP·D55 showed specific replication and cytotoxicity in AFP-positive hepatoma cells. It also showed enhanced safety in normal cells when compared with the mono-regulated vector ZD55. To improve the anti-hepatoma activities of the virus, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene was introduced into Ad·AFP·D55. Ad·AFP·D55-TRAIL exhibited remarkable anti-tumor activities in vitro and in vivo. Treatment with Ad·AFP·D55-TRAIL can induce both autophagy owing to the Ad·AFP·D55 vector and caspase-dependent apoptosis owing to the TRAIL protein. Therefore, Ad·AFP·D55-TRAIL could be a potential anti-hepatoma agent with anti-tumor activities due to AFP-specific replication and TRAIL-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P . Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153–156.

    Article  CAS  PubMed  Google Scholar 

  2. Liu XY, Gu JF . Targeting gene-virotherapy of cancer. Cell Res 2006; 16: 25–30.

    Article  PubMed  Google Scholar 

  3. Zhang ZL, Zou WG, Luo CX, Li BH, Wang JH, Sun LY et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res 2003; 13: 481–489.

    Article  CAS  PubMed  Google Scholar 

  4. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  5. O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6: 611–623.

    Article  PubMed  Google Scholar 

  6. Wei N, Fan JK, Gu JF, He LF, Tang WH, Cao X et al. A double-regulated oncolytic adenovirus with improved safety for adenocarcinoma therapy. Biochem Biophys Res Commun 2009; 388: 234–239.

    Article  CAS  PubMed  Google Scholar 

  7. Camper SA, Tilghman SM . The activation and silencing of gene transcription in the liver. Biotechnology 1991; 16: 81–87.

    CAS  PubMed  Google Scholar 

  8. Nakabayashi H, Hashimoto T, Miyao Y, Tjong KK, Chan J, Tamaoki T . A position-dependent silencer plays a major role in repressing alpha-fetoprotein expression in human hepatoma. Mol Cell Biol 1991; 11: 5885–5893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim J, Lee B, Kim JS, Yun CO, Kim JH, Lee YJ et al. Antitumoral effects of recombinant adenovirus YKL-1001, conditionally replicating in alpha-fetoprotein-producing human liver cancer cells. Cancer Lett 2002; 180: 23–32.

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi M, Sato T, Sagawa T, Lu Y, Sato Y, Iyama S et al. E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor. Mol Ther 2002; 5: 627–634.

    Article  CAS  PubMed  Google Scholar 

  11. Abou El Hassan MA, van der Meulen-Muileman I, Abbas S, Kruyt FA . Conditionally replicating adenoviruses kill tumor cells via a basic apoptotic machinery-independent mechanism that resembles necrosis-like programmed cell death. J Virol 2004; 78: 12243–12251.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ito H, Aoki H, Kuhnel F, Kondo Y, Kubicka S, Wirth T et al. Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 2006; 98: 625–636.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F et al. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 2007; 99: 1410–1414.

    Article  CAS  PubMed  Google Scholar 

  14. Ulasov IV, Tyler MA, Zhu ZB, Han Y, He TC, Lesniak MS . Oncolytic adenoviral vectors which employ the survivin promoter induce glioma oncolysis via a process of beclin-dependent autophagy. Int J Oncol 2009; 34: 729–742.

    CAS  PubMed  Google Scholar 

  15. Yang M, Cao X, Yu MC, Gu JF, Shen ZH, Ding M et al. Potent antitumor efficacy of ST13 for colorectal cancer mediated by oncolytic adenovirus via mitochondrial apoptotic cell death. Hum Gene Ther 2008; 19: 343–353.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang KJ, Wang YG, Cao X, Zhong SY, Wei RC, Wu YM et al. Potent antitumor effect of interleukin-24 gene in the survivin promoter and retinoblastoma double-regulated oncolytic adenovirus. Hum Gene Ther 2009; 20: 818–830.

    Article  CAS  PubMed  Google Scholar 

  17. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    Article  CAS  PubMed  Google Scholar 

  18. Johnstone RW, Frew AJ, Smyth MJ . The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 2008; 8: 782–798.

    Article  CAS  PubMed  Google Scholar 

  19. Qiu S, Ruan H, Pei Z, Hu B, Lan P, Wang J et al. Combination of Targeting Gene-ViroTherapy with 5-FU enhances antitumor efficacy in malignant colorectal carcinoma. J Interferon Cytokine Res 2004; 24: 219–230.

    Article  CAS  PubMed  Google Scholar 

  20. Kagawa S, He C, Gu J, Koch P, Rha SJ, Roth JA et al. Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res 2001; 61: 3330–3338.

    CAS  PubMed  Google Scholar 

  21. Lee J, Hampl M, Albert P, Fine HA . Antitumor activity and prolonged expression from a TRAIL-expressing adenoviral vector. Neoplasia 2002; 4: 312–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seol JY, Park KH, Hwang CI, Park WY, Yoo CG, Kim YW et al. Adenovirus-TRAIL can overcome TRAIL resistance and induce a bystander effect. Cancer Gene Ther 2003; 10: 540–548.

    Article  CAS  PubMed  Google Scholar 

  23. Tamaoki T . Human alpha-fetoprotein transcriptional regulatory sequences. Application to gene therapy. Adv Exp Med Biol 2000; 465: 47–56.

    Article  CAS  PubMed  Google Scholar 

  24. Ohguchi S, Nakatsukasa H, Higashi T, Ashida K, Nouso K, Ishizaki M et al. Expression of alpha-fetoprotein and albumin genes in human hepatocellular carcinomas: limitations in the application of the genes for targeting human hepatocellular carcinoma in gene therapy. Hepatology 1998; 27: 599–607.

    Article  CAS  PubMed  Google Scholar 

  25. Wasylyk B, Wasylyk C, Chambon P . Short and long range activation by the SV40 enhancer. Nucleic Acids Res 1984; 12: 5589–5608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ondek B, Shepard A, Herr W . Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities. EMBO J 1987; 6: 1017–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baehrecke EH . How death shapes life during development. Nat Rev Mol Cell Biol 2002; 3: 779–787.

    Article  CAS  PubMed  Google Scholar 

  28. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G . Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8: 741–752.

    Article  CAS  PubMed  Google Scholar 

  29. Berry DL, Baehrecke EH . Autophagy functions in programmed cell death. Autophagy 2008; 4: 359–360.

    Article  PubMed  Google Scholar 

  30. Debnath J, Baehrecke EH, Kroemer G . Does autophagy contribute to cell death? Autophagy 2005; 1: 66–74.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang H, White EJ, Gomez-Manzano C, Fueyo J . Adenovirus's last trick: you say lysis, we say autophagy. Autophagy 2008; 4: 118–120.

    Article  PubMed  Google Scholar 

  32. Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS . Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA 2004; 101: 3438–3443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM et al. Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 2008; 283: 19665–19677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 2009; 28: 677–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park KJ, Lee SH, Kim TI, Lee HW, Lee CH, Kim EH et al. A human scFv antibody against TRAIL receptor 2 induces autophagic cell death in both TRAIL-sensitive and TRAIL-resistant cancer cells. Cancer Res 2007; 67: 7327–7334.

    Article  CAS  PubMed  Google Scholar 

  36. Ulasov IV, Sonabend AM, Nandi S, Khramtsov A, Han Y, Lesniak MS . Combination of adenoviral virotherapy and temozolomide chemotherapy eradicates malignant glioma through autophagic and apoptotic cell death in vivo. Br J Cancer 2009; 100: 1154–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu B, Zhu H, Qiu S, Su Y, Ling W, Xiao W et al. Enhanced TRAIL sensitivity by E1A expression in human cancer and normal cell lines: inhibition by adenovirus E1B19K and E3 proteins. Biochem Biophys Res Commun 2004; 325: 1153–1162.

    Article  CAS  PubMed  Google Scholar 

  38. Shao R, Lee DF, Wen Y, Ding Y, Xia W, Ping B et al. E1A sensitizes cancer cells to TRAIL-induced apoptosis through enhancement of caspase activation. Mol Cancer Res 2005; 3: 219–226.

    CAS  PubMed  Google Scholar 

  39. Pei Z, Chu L, Zou W, Zhang Z, Qiu S, Qi R et al. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology 2004; 39: 1371–1381.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Gu J, Zhao L, He L, Qian W, Wang J et al. Complete elimination of colorectal tumor xenograft by combined manganese superoxide dismutase with tumor necrosis factor-related apoptosis-inducing ligand gene virotherapy. Cancer Res 2006; 66: 4291–4298.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao L, Dong A, Gu J, Liu Z, Zhang Y, Zhang W et al. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther 2006; 13: 1011–1022.

    Article  CAS  PubMed  Google Scholar 

  42. Niwa Y, Kanda H, Shikauchi Y, Saiura A, Matsubara K, Kitagawa T et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 2005; 24: 6406–6417.

    Article  CAS  PubMed  Google Scholar 

  43. Kusaba M, Nakao K, Goto T, Nishimura D, Kawashimo H, Shibata H et al. Abrogation of constitutive STAT3 activity sensitizes human hepatoma cells to TRAIL-mediated apoptosis. J Hepatol 2007; 47: 546–555.

    Article  CAS  PubMed  Google Scholar 

  44. Zou W, Luo C, Zhang Z, Liu J, Gu J, Pei Z et al. A novel oncolytic adenovirus targeting to telomerase activity in tumor cells with potent. Oncogene 2004; 23: 457–464.

    Article  CAS  PubMed  Google Scholar 

  45. Mosmann T . Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55–63.

    Article  CAS  PubMed  Google Scholar 

  46. Herrmann M, Lorenz HM, Voll R, Grunke M, Woith W, Kalden JR . A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 1994; 22: 5506–5507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Puntel M, Curtin JF, Zirger JM, Muhammad AK, Xiong W, Liu C et al. Quantification of high-capacity helper-dependent adenoviral vector genomes in vitro and in vivo, using quantitative TaqMan real-time polymerase chain reaction. Hum Gene Ther 2006; 17: 531–544.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Mu-Jun Zhao for providing the EGFP-LC3 plasmid, Professor Hong-Bin Ji for providing the BEAS-2B cell line, Professor You-Cheng Xu for critical reading the manuscript, Dr Han Di for help with the molecular cloning and Ms Lan-Ying Sun for help with the cell culture. This study was supported by grants from the National Nature Science Foundation of China (No. 30623003), the Science and Technology Commission of Shanghai Municipality (No. 06DZ22032), the National Basic Research Program of China (973 Program) (No. 2004 CB51804), the Hi-Tech Research Development Program of China (863 Program) (No. 2007AA 021006), the Key Project of the Chinese Academy of Science (No. KSCX2-YW-R -09, R-04) and the Zhejiang Sci-Tech University Grant 0616033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-Y Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Yang, M., Wei, RC. et al. Cancer targeting Gene-Viro-Therapy of liver carcinoma by dual-regulated oncolytic adenovirus armed with TRAIL gene. Gene Ther 18, 765–777 (2011). https://doi.org/10.1038/gt.2011.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.16

Keywords

This article is cited by

Search

Quick links