Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cochlear protection against cisplatin by viral transfection of X-linked inhibitor of apoptosis protein across round window membrane

Abstract

We have previously demonstrated that both age-related and noise-induced hearing loss are reduced in transgenic mice that ubiquitously overexpress X-linked inhibitor of apoptosis protein (XIAP). In view of the therapeutic implications of these findings, we have developed a minimally invasive surgical method to deliver adenoid-associated virus (AAV) across the round window membrane (RWM) of the cochlea, enabling efficient gene transfer to hair cells and sensory neurons in this enclosed structure. This RWM approach was used in the present study to evaluate the effectiveness of AAV-mediated XIAP overexpression in protecting against cisplatin-induced ototoxicity. Two weeks following surgery, AAV-derived XIAP was detected in the majority of inner and outer hair cells, resulting in a threefold elevation of this antiapoptotic protein in the cochlea. The protection of AAV-mediated XIAP overexpression was evaluated in animals treated with cisplatin at a dose of 4 mg kg−1 per day for 4–7 consecutive days. The XIAP overexpression was found to attenuate cisplatin-induced hearing loss by ~22 dB. This was accompanied by a reduction of the loss of vulnerable hair cells and sensory neurons in the cochlea by 13%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. National Cancer Institute Cancer Drug Information: Cisplatin. National Institute of Health, 2014, http://www.cancer.gov/cancertopics/druginfo/cisplatin.

  2. Langer T, am Zehnhoff-Dinnesen A, Radtke S, Meitert J, Zolk O . Understanding platinum-induced ototoxicity. Trends Pharmacol Sci 2013; 34: 458–469.

    Article  CAS  PubMed  Google Scholar 

  3. Brock PR, Knight KR, Freyer DR, Campbell KC, Steyger PS, Blakley BW et al. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International Society of Pediatric Oncology Boston ototoxicity scale. J Clin Oncol 2012; 30: 2408–2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wightman FL . Psychoacoustic correlates of hearing loss. In: Hamernik RP, Henderson D, Salvi RJ (eds). New Perspectives on Noise-Induced Hearing Loss. Raven Press: New York, NY, USA, pp 375–394 1982.

    Google Scholar 

  5. van Ruijven MW, de Groot JC, Klis SF, Smoorenburg GF . The cochlear targets of cisplatin: an electrophysiological and morphological time-sequence study. Hear Res 2005; 205: 241–248.

    Article  CAS  PubMed  Google Scholar 

  6. Meech RP, Campbell KC, Hughes LP, Rybak LP . A semiquantitative analysis of the effects of cisplatin on the rat stria vascularis. Hear Res 1998; 124: 44–59.

    Article  CAS  PubMed  Google Scholar 

  7. Sluyter S, Klis SF, de Groot JC, Smoorenburg GF . Alterations in the stria vascularis in relation to cisplatin ototoxicity and recovery. Hear Res 2003; 185: 49–56.

    Article  CAS  PubMed  Google Scholar 

  8. Hamers FP, Wijbenga J, Wolters FL, Klis SF, Sluyter S, Smoorenburg GF . Cisplatin ototoxicity involves organ of Corti, stria vascularis and spiral ganglion: modulation by alphaMSH and ORG 2766. Audiol Neurootol 2003; 8: 305–315.

    Article  CAS  PubMed  Google Scholar 

  9. Goncalves MS, Silveira AF, Teixeira AR, Hyppolito MA . Mechanisms of cisplatin ototoxicity: theoretical review. J Laryngol Otol 2013; 127: 536–541.

    Article  CAS  PubMed  Google Scholar 

  10. Devarajan P, Savoca M, Castaneda MP, Park MS, Esteban-Cruciani N, Kalinec G et al. Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways. Hear Res 2002; 174: 45–54.

    Article  CAS  PubMed  Google Scholar 

  11. Carleton BC, Ross CJ, Bhavsar AP, Amstutz U, Pussegoda K, Visscher H et al. Role of TPMT and COMT genetic variation in cisplatin-induced ototoxicity. Clin Pharmacol Ther 2013; 95: 253.

    Article  PubMed  Google Scholar 

  12. Rednam S, Scheurer ME, Adesina A, Lau CC, Okcu MF . Glutathione S-transferase P1 single nucleotide polymorphism predicts permanent ototoxicity in children with medulloblastoma. Pediatr Blood Cancer 2013; 60: 593–598.

    Article  CAS  PubMed  Google Scholar 

  13. Waissbluth S, Daniel SJ . Cisplatin-induced ototoxicity: transporters playing a role in cisplatin toxicity. Hear Res 2013; 299: 37–45.

    Article  CAS  PubMed  Google Scholar 

  14. Waissbluth S, Salehi P, He X, Daniel SJ . Systemic dexamethasone for the prevention of cisplatin-induced ototoxicity. Eur Arch Otorhinolaryngol 2013; 270: 1597–1605.

    Article  PubMed  Google Scholar 

  15. Gopal KV, Wu C, Shrestha B, Campbell KC, Moore EJ, Gross GW . d-Methionine protects against cisplatin-induced neurotoxicity in cortical networks. Neurotoxicol Teratol 2012; 34: 495–504.

    Article  CAS  PubMed  Google Scholar 

  16. Poirrier AL, Pincemail J, Van Den Ackerveken P, Lefebvre PP, Malgrange B . Oxidative stress in the cochlea: an update. Curr Med Chem 2010; 17: 3591–3604.

    Article  CAS  PubMed  Google Scholar 

  17. Choi J, Im GJ, Chang J, Chae SW, Lee SH, Kwon SY et al. Protective effects of apocynin on cisplatin-induced ototoxicity in an auditory cell line and in zebrafish. J Appl Toxicol 2013; 33: 125–133.

    Article  PubMed  Google Scholar 

  18. Waissbluth S, Pitaro J, Daniel SJ . Gene therapy for cisplatin-induced ototoxicity: a systematic review of in vitro and experimental animal studies. Otol Neurotol 2012; 33: 302–310.

    Article  PubMed  Google Scholar 

  19. Abi-Hachem RN, Zine A, Van De Water TR . The injured cochlea as a target for inflammatory processes, initiation of cell death pathways and application of related otoprotectives strategies. Recent Pat CNS Drug Discov 2010; 5: 147–163.

    Article  CAS  PubMed  Google Scholar 

  20. Chan DK, Lieberman DM, Musatov S, Goldfein JA, Selesnick SH, Kaplitt MG . Protection against cisplatin-induced ototoxicity by adeno-associated virus-mediated delivery of the X-linked inhibitor of apoptosis protein is not dependent on caspase inhibition. Otol Neurotol 2007; 28: 417–425.

    Article  PubMed  Google Scholar 

  21. Cooper LB, Chan DK, Roediger FC, Shaffer BR, Fraser JF, Musatov S et al. AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity. Otol Neurotol 2006; 27: 484–490.

    PubMed  Google Scholar 

  22. Wang J, Ladrech S, Pujol R, Brabet P, Van De Water TR, Puel JL . Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res 2004; 64: 9217–9224.

    Article  CAS  PubMed  Google Scholar 

  23. Lefebvre PP, Malgrange B, Lallemend F, Staecker H, Moonen G, Van De Water TR . Mechanisms of cell death in the injured auditory system: otoprotective strategies. Audiol Neurootol 2002; 7: 165–170.

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Menchenton T, Yin S, Yu Z, Bance M, Morris DP et al. Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice. Neurobiol Aging 2010; 31: 1238–1249.

    Article  PubMed  Google Scholar 

  25. Wang J, Tymczyszyn N, Yu Z, Yin S, Bance M, Robertson GS . Overexpression of X-linked inhibitor of apoptosis protein protects against noise-induced hearing loss in mice. Gene Ther 2011; 18: 560–568.

    Article  CAS  PubMed  Google Scholar 

  26. Wang H, Murphy R, Taaffe D, Yin S, Xia L, Hauswirth WW et al. Efficient cochlear gene transfection in guinea-pigs with adeno-associated viral vectors by partial digestion of round window membrane. Gene Ther 2012; 19: 255–263.

    Article  CAS  PubMed  Google Scholar 

  27. Jayandharan GR, Zhong L, Sack BK, Rivers AE, Li M, Li B et al. Optimized adeno-associated virus (AAV)-protein phosphatase-5 helper viruses for efficient liver transduction by single-stranded AAV vectors: therapeutic expression of factor IX at reduced vector doses. Hum Gene Ther 2010; 21: 271–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-McKenna M et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 2008; 381: 194–202.

    Article  CAS  PubMed  Google Scholar 

  29. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008; 105: 7827–7832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009; 17: 463–471.

    Article  CAS  PubMed  Google Scholar 

  31. Zilberstein Y, Liberman MC, Corfas G . Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 2012; 32: 405–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin HW, Furman AC, Kujawa SG, Liberman MC . Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 2011; 12: 605–616.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kujawa SG, Liberman MC . Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. J Neurosci 2009; 29: 14077–14085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu L, Wang H, Shi L, Almuklass A, He T, Aiken S et al. Silent damage of noise on cochlear afferent innervation in guinea pigs and the impact on temporal processing. PLoS One 2012; 7: e49550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Yin or J Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, H., Tao, S., Liu, L. et al. Cochlear protection against cisplatin by viral transfection of X-linked inhibitor of apoptosis protein across round window membrane. Gene Ther 22, 546–552 (2015). https://doi.org/10.1038/gt.2015.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.22

This article is cited by

Search

Quick links